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11-1 INTRODUCTION

We now utilize all the foundations and analyses that we have provided in the preceding
chapters in the ultimate goal of design of control systems. Starting with the controlled pro-
cess such as that shown by the block diagram in Fig. 11-1, control system design involves
the following three steps:

1. A|&E0] F9= otdl Of

SHEF(2AIALS).

oL

A g Ael7rE 278

2. MO7|Lt E& 7|1 E MOSEo oEA A28 A
QI7tof| 2rASHY 1 B X| Y2ts ALY
3. 2A=HE Edot7| ?loh MO 7|2| mtetnfE 2k
Sg ZHC
") | CONTROLLED o
Control PROCESS Gp  |Controlled variables

vector (output vector) Figure 11-1  Controlled process.



11-1-1 Design Specifications
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11-2 DESIGN WITH THE PD CONTROLLER
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11-2 DESIGN WITH THE PD CONTROLLER

R(s) : E(s)
+

PD control adds asimple zero at s=-Ky/Ky

to the forward-path transfer function.

K, Uis) o} .4 Yis) " )
: s+ 20a) W’
+ G ($)=
Gp(.\') g S(S RE 2;0)" )
Kps G.(s)=K,+K,s
G.(s) de(t
u(t)= K, e(t)+ K, 28)

Figure 11-3  Control system with PD controller.

Comparing Eq. (11-2) with Eq. (11-4), we have

-

KP = Rz /Rn KD e R.’_Cl

The transfer function of the circuit in Fig. 11-4b is

E(s) R,
E_(s) R,

+R,C;s

Comparing Eq. (11-2) with Eq. (11-6), we have

KP=R2/RI KD=RdCd

Figure 11-4  Op-amp circuit realization of the PD controller.

(11-1)

(11-2)

(11-3)

(11-5)

(11-6)

(11-7)




PD isessentially an anticipatory con
trol that by knowing the slope, the co
ntroller can anticipate direction of the !
error and use it to better control the pr
OCESS.

For O<t<t,, de(t)=dt is negative; this 'J
will reduce the original torque develop .
ed due to e(t) alone. l
2. For t,<t<t,, both e(t) and de(t)=dt a

re negative, which means that the nega
tive retarding torque developed will be
greater than that with only proportiona _
| control. I
3. For t,<t<t,, e(t) and de(t)=dt have
opposite signs. Thus, the negative torq )
ue that originally contributesto the un “
dershoot is reduced also. ¢

PD control adds a simple zero at
s=—K, /K, to the forward-path
transfer function.

Figure 11-5

A .

(a)

The derivative control measures the instantaneous slope of e(t), predictsthel
arge overshoot ahead of time, and makes a proper corrective effort before the
excessive overshoot actually occurs.

P

(c)

Waveforms of y(t), e(t), and de(t)/dt, showing the effect of derivative control. (@) Unit-

step response. (b) Error signal. (¢) Time rate of change of the error signal.
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11-2-2 Frequency-Domain Interpretation of PD Control

¢ The PD controller 1s a
high-pass filter.

|G Ajewi|(dB)

¢ The PD controller has the
disadvantage that it
accentuates high-frequency
noise.

1KoK T KoKy o T
w (rad/sec)

¢ The PD controller will

generally increase the BW
and reduce the rise time of
the step response.

U

45

2 G (joi(deg)

30}

I5¢

1) ‘
0.IKJK KoKy 10K /K
@ (rad/sec)

K, s
Figure 11-6  Bode diagram of 1+—2, K, =1.
Kf'
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11-2-3 Summary of Effects of PD Control

A properly designed PD controller can affect the performance of a control system in the followin

g ways:

1. Improving damping and reducing maximum overshoot.
2. Reducing rise time and settling time.

3. Increasing BW.

4. Improving GM, PM, and M..

5. Possibly accentuating noise at higher frequencies.

6. Possibly requiring arelatively large capacitor in circuit implementation.



EXAMPLE 11-2-1
Let us reconsider the second-order model of the aircraft attitude control system shown in Fig. 7-52.

Ky
: Gear
Sensoe Peeang e
8, 8 " l" .tl . ,n r.' . M" ' o
—ﬂ ‘H K, —c("‘)—-x > L% &"'“ &*—.m EF’ N >
2 Power amphilcr
Cument feedback
Ky
Tachometer feedhack
",
4500K
G(s)=————— (11-10)
s(s+361.2)

Let us set the performance specifications as follows:

Steady-state error due to unit-ramp input <0.000443
Maximum overshoot <5%

Rise time ¢, £0.005 s

2% Settling time ¢, <0.005 s

Rix) = s | x' q'z Y(r)‘
h </ (s + 2La,) <
4500K
66 =iy
Koy

GAx)




Time-Domain Design With the PD controller of Eq. (11-9) and K=181.17,
the forward-path trans-fer function of the system becomes

©,(s) 815,265(K, +Ks)

G(s)=
0, (s) s(s+361.2)

(11-11)

The closed-loop transfer function is

K
815,265K £
0,(s) "(”K )

D

©.(s) s*+(361.2+815,265K,)s+815,265K,

(11-12)

Equation (11-12) shows that the effects of the PD controller are as follows:

I. Adding a zero at s=—K /K|, to the closed-loop transfer function

| S

Increasing the damping term, which is the coefficient of the s term in the denominator, from
361.2 to 361.2+815,265K,

3. No impact on steady-state response
From Eq. (11-12) the following observations are made:

The steady-state error due to a unit-step input is e, = 0.

The ramp-error constant is

815,265K
K,=1limsG(s)= = =2257.1K, (11-13)
~30 361.2




The steady-state error due to a unit-ramp input is e, = 1/K, =0.000443/K .
Also, from Eq. (11-12), the characteristic equation is written as

s? +(361.2+815,265K , )s +815,265K, =0 (11-14)

which clearly shows the positive effect of K on damping.

Hence upon neglecting the zero, if we use a prototype second order transfer function, from Eq. (11-14)

"’l

maximum overshoot=0.05=¢ ="V'* (11-15)

provides the desired damping ratio for a 5 percent overshoot. Hence, { =0.69. Using the 2 percent
settling time formula, for a 0.005 s settling time,

4.0
2 percent settling time: £, =0.005= 0<£ <09 (11-16)

n

the desired value of natural frequency is @ =1,159.2 rad/s. As a result,

_(1159.2)

| = =1.648231 (11-17)
815,265

_ 361.2+815,265K,

¢ (2)(1159.2)

=0.156+351.6K, (11-18)

Or,

K, =0.001519 (11-19)



Note that from Eq. (11-13), the value of K, in Eq. (11-17) automatically satisfies the steady-
state error due to unit-ramp input <0.000443. With these values, the poles and the zero of the
system are at

(361.2+815,265K,,)
$12=—
' 2
361.2+815,265K, )’
ij\/( 5 L —815,265(K,)
=—800+ j838.9 (11-20)
1000
| |  -800+/839 Kp=0.001519
800 - TR Kp=1648231 g
// / \ \\\\_
600 - e o NN \ .
i \ e
400 - / / -
w //‘ ,’ \\ \\\‘\\
v— , 3 3
< Ar ! T 768 133.6° -
£ oo | L2 BT
| 'l
_200 - -1,085 —361.2/,- 0 i
\. J
~400 - \ o _
N\ S
—600 + N i}
N -800+/839
—1000 ! L | .
~2500 ~2000 ~1500 ~1000 -500 0
Real Axis

Figure 117 Root locus of Eq. (11-12) for the controller zero fixed at s=—K /K =—1085.

500



Recall from Eq. (8-19) in Chap. 8 that for the desired poles of the closed loop system to be on the
root locus, the poles must meet the angle criterion. In our case, as shown in Fig. 11-7,

Z(s+361.2)+ £Ls— Z(s+1,085)=117.6°+133.6"-71.2° =180 (11-22)

the closed loop poles and zero from will obviously meet the root-locus angle criterion.

l '4 | | | | | |
PO=13 iy
1.2+ 2% setting ume: i
0.0043 Seconds
8 ILE Z = e
& 0.8 Rise time:
z 0.0009 seconds
=8
2 06 i
3
g
< 04 The system response, shown in Fig. 11-8, meets the rise time and settling time criteria
while the maximum overshoot is well above the desired
0.2 5 percent. This is because of the influence of the controller zero, see Sec. 7-8.
0 1 1 1 1 1
0 1 2 3 - v 6 7
Time (ms)

Figure 11-8  Unit-step response of Eq. (11-12) for the controller zero fixed at s=—-K, /K, =—-1085 and
poles at s, , =—800 £ j838.9.



Always check whether the dc
motor can provide the required
torque to achieve the desired
response. You must operate the
motor below its stall torque limits.

desired response, we must move the poles of the system, along the root locus, to a new
location while exploring the time response behavior. The easiest strategy is to substitute
the fixed zero value s=—K,/K,=-1085 into Eq. (11-14) and solve for the closed loop
poles as K increases. Fixing the zero of the controller has the advantage of reducing the
number of unknown controller parameters from two to one. As a result the revised char-

acteristic equation of the system is

s*+(361.2+815,265K , )s+815,265(1085K ,)=0 (11-23)
Solving for the poles of the system in Eq. (11-14), we have
] __(361.2+815,265K},)
12— 2
: (11-24)
. [(361.2+815,265K ) )°
tj p —815,265(1085K )
1000 ' "
800 7 o . -
//' \ 2% settmg hime:
o / 1% Lo
400 F '; \ ! E :
a0 | Kyy=0.01108 | '| i - 1
CHE Kp=131283 | 1,088 ' s
S ot . ) Sl S .
B -%,170 [ ~1.200 B
£ ~200 + | | 1 <
| / i 4
400+ \ | A |
\ /
~H0 - \.\ !v‘ 1
\
-800 T A L .
N : 1S 2 23 3.5
~1000 . ' ) . . 1 Time (ms)
0000 9000 3000 ' 000 1000 0

Read Axes

desired response poles for K, = 001105 and K, = 13.1285.

Figure 1110 Desired unit-step response of Eq. (11-12) for K= 0.01105 and K = 13.1285,
Flgwre 119 Root locus of Eq. (11-12} for the controller zero fixed at s =- K, /K, =—1,085, showing



Frequency-Domain Design

Frequency-Domain Design The Bode plot of Eq. (11-30) is used to conduct the frequency-domain
design of the PD controller. Figure 11-18 shows the Bode plot for K, = 1 and K, = 0. The following
performance data are obtained for the uncompensated system:

Gain margin=3.6 dB #
Phase margin=7.77° ®
Resonant Peak M, =7.62 s
Bandwidth BW =1408.83 rad/s . o
Gain crossover (GCO)=2888.94 rad/s = %
»
Phase crossover (PCO)=1103.69 rad/s g 2
10 - ”'ﬁ‘,-a.uﬁ?f IHE
0
0 ettt L et 4 o Kp =00 -
Ey 100 150 100
o [rodisec)
)
LA
‘A'l,-uu)l'n
1o L §ond
120
1%
§ oo L ELHHY LN
§ 1%
~
~160
815,265(1+K s % EEIEH SRR L
Figure 11-15  Bode plot of G(s)= (1+K, ). l
s(s+361.2) wel— L2 2 DU 2 L e DL



The results in Table 11-3 show that the gain margin is always infinite, and thus the rela-

tive stability is measured by the phase margin. This is one example where the gain margin
is not an effective measure of the relative stability of the system. When K, =0.00177, which

corresponds to critical damping, the phase margin is 82.92° the resonant peak M is 1.025,
and BW is 1669 rad/s. The performance requirements in the frequency domain are all satis-
fied. Other effects of the PD control are that the BW and the gain-crossover frequency are
increased. The phase-crossover frequency is always infinite in this case.

TABLE11-3  Frequency-Domain Characteristics of the System in Example 11-2-1 with PD Controller

GM PM Gain CO BW Maximum
K, (dB) (deg) (rad/s) (rad/s) M t (s) t (s) Overshoot (%)
0 oo 22.68 868 1370 2.522 0.00125 0.0151 52.2
0.0005 oo 46.2 913.5 1326 1.381 0.0076 0.0076 25.7
0.00177 oo 82.92 1502 1669 1.025 0.00119 0.0049 42

0.0025 oo 88.95 2046 2083 1.000 0.00103 0.0013 0.7




11-2 DESIGN WITH THE PD CONTROLLER

» EXAMPLE 9-2-2 Consider the third-order aircraft attitude control system discussed in Chapter 5 with the forward-path
transfer function given in Eq. (5-153),

B 1.5 x 107K

N sli.s2 + 3408 35+ 1,204,000)

Gis) (9-19)

Let us set the performance specifications as follows:

Steady-state error due to unit-ramp input = 0.000443
Maximum overshoot << 5%
Rise time 7, < 0.005 sec

Settling time 7, < 0.005 sec '
From Chapter 5, when K =181.17, the maximu pde
m overshoot of the system is 78.88%. e
200 :,mu
ku-,\s 2 19553« j192 _ Lol
A0 =4S _lu): L W | o
. l .//l" K< K=h 2ot Keo K-~
f N ) 4.1/"“" -
1.20 913 LULE ) 301/ 7200
K=1812 K724 ot
5 FoYaN FENy
040 1;\.\- l,;x;mk' A : '7 e
S
0w 0 a0 am 0nns ans
Time (se¢)




vplamne

200

1M

2.718 x 1P Kps

i d eventually approach the vertical asymptotes that inter
complex roots will actually have reduced damping

e characteristic equation roots, from the standpoint of rel

Time-Domain Design
Setung Kp — 1 arbitranly, the characteristic equation ol the closed-loop system 1s wrilten

s 4+ 3408.35" + (1,204,000 + 2718 x 10"Kp)s + 2718 x 10” =0 {9-21)

To apply the root-contour method, we condition Eq. (9-21) as

(9-22)

1 4+ Gaylsl |+~ — - -
1 S+ 08252 + 1.204.000s + 2.718 x 109

2718 X 1WPKps

JUO6.6){s + 5749 — jK)6.6)

Geols)

1§ +3293.3)(s 1 57.49

AL

The PD controller may improvetherelative stability
of the system. As K, increases, one root of the characte
ristic equation moves from -3293.3 toward the origin,

while the two complex roots start out toward the left an

“| sect a s=- 1704. Theimmediate assessment of the s
tuation isthat, if the value of Ky istoo large, thetwo

whileincreasing the natural frequency of the system
. It appears that the ideal location for the two complex

ative stability, is near the bend of the root contour, whe
re the relative damping ratio is approximately 0.707.

Figure %12 Root contosrs of
& 4+ 340835 4 (1,204,000 + 2718 »

4, 00 WP Kp s+ 2718 = LR =0



Table 9-3 gives the results of maximum overshoot, rise time, settling time, and the
roots of the characteristic equation as functions of the parameter Kp. The following
conclusions are drawn on the effects of the PD controller on the third-order system.

1. The minimum value of the maximum overshoot, 11.37%, occurs when K, is
approximately 0.002.
2. Rise time is improved (reduced) with the increase of Kp.

3. Too high a value of K will actually increase the maximum overshoot and the
settling time substantially. The latter 1s because the damping 1s reduced as K, 1s
mncreased indefinitely.

TABLE 9-3 Time-Domain Attributes of the Third-Order System in Example 9-2-2
with PD Controller

% Maximum 2 i,
Kp Overshoot (sec) (sec) Characteristic Equation Roots

0 78.88 0.00125 0.0495 —3293.3, —57.49 £ j906.6
0.0005 41.31 0.00120 0.0106 —2843.07, —282.62 £ j936.02
0.00127 17.97 0.00100 0.00398 —1523.11, —942.60 £+ 946.58
0.00157 14.05 0.00091 0.00337 —805.33, —1301.48 £ j1296.59
0.00200 11.37 (.00080 0.00255 —531.89, —1438.20 £ j1744.00
0.00500 17.97 (.00042 0.00130 —191.71, —1608.29 + j3404.52
0.01000 314 0.00026 0.00093 —96.85, —1655.72 = j5032

0.05000 61.80 0.00010 0.00144 -19.83, —1694.30 = j11583




Fig. 9-13 shows the unit-step responses of the system with the PD controller for several
values of Kp. The conclusion is that, while the PD control does improve the damping of the
system, it does not meet the maximum-overshoot requirement.

1.0

8,0

AL
ALY,

0 (.01 0.02 0.03 (.04

Time (sec)

Figure 9-13 Unit-step responses of the system in Example 9-2-2 with PD controller.



Frequency-Domain Design
The Bode plot of Eq. (9-20) is used to conduct the frequency-domain design of the PD
controller. Fig. 9-14 shows the Bode plot for Kp =1 and Kp = (. The following

performance data are obtained for the uncompensated system:
Gainmargin = 3.6dB
Phase margin = 7.777

Resonant Peak M, = 7.62
Bandwidth BW = 1408 83 rad/sec

Gain crossover (GCO) = 888.94 rad/scc
Phase crossover (PCO} = 1103.69 rad/sec
TABLE 34 Frequency-Domain Characteristics of the Third-Order System in Example 9-2-2
with PD Controller
GM PM BW Gain CO Phase CO
Kn 1dB) (deg) M, (radisec) (rad/sec) (rad/sec)
0 36 n 7.62 1408.83 888,94 1103.69
0.0005 0 30.94 1.89 1485.98 93591 ac
0.00127 e s33 1.19 1939.21 1210.74 x
0.00157 oo 56.83 1.12 2198.83 1372.30 ax
0,00200 o0 5842 1.07 2604.99 1620.75 %
0.00500 x 47.62 1.24 4980.34 311883 x
0.01000 o 5T 1.63 7565.89 4789.42 a0
0.0500 o0 16,69 M 17989.03 11521.00 x
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Figure 914 Bode diagram of G(s) of the system in Example 9-2-2 with PD controller.



When Kp = 0.002, the phase margin is at a maximum of 58.42° and M, is also
minimum at 1.07, which happens to agree with the optimal value obtained in the time-
domain design summarized in Table 9-3. When the value of Kp, is increased beyond 0.002,
the phase margin decreases, which agrees with the findings from the time-domain design
that large values of K actually decreases damping. However, the BW and the gain
crossover increase continuously with the increase in K. The frequency-domain design
again shows that the PD control falls short in meeting the performance requirements
1mposed on the system. Just as in the time-domain design, we have demonstrated that if the
original system has very low damping, or is unstable, PD control may not be effective in
1mproving the stability of the system. Another situation under which PD control may be
meffective is if the slope of the phase curve near the gain-crossover frequency is steep, in
which case the rapid decrease of the phase margin due to the increase of the gain crossover
from the added gain of the PD controller may render the additional phase ineffective.




11-3 DESIGN WITH THE PI CONTROLLER
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11-3 DESIGN WITH THE PI CONTROLLER

b

t s 5 2 Ay A-plane
Rix) L | Ets) X, U“H &_Pm N); P
R G0
Pe * >
e 5{ S ;l_ o
5 "
G ix)
Gels) = Kp + ﬁ (9-24)
= §
=t R E)s) Ry Ry
J " G - = =— = -2
+
i [
- Ry R
= K — — K — -
(a) 5 Rl ! Rl Cg (Q 26)
iz
EJs) R 1
R, al,
"v‘; - G — T — _27
l+\ C(S) Em(s) Ry RiCis (2-27)
) R . Ry 1 —

(b

Figure 316  Op-mnp-circuit
realization of the PI
controller, G.(s) = Kp + —
{a}) Two-op-amp circwt.

{b) Three-op-amp clrewit



Clearly, the immediate effects of the PI controller are as follows:

1. Adding a zero at s = —K;/Kp to the forward-path transfer function.

2. Adding a pole at s = 0 to the forward-path transfer function. This means that the
system type is increased by 1 to a type 2 system. Thus, the steady-state error of the
original system is improved by one order; that is, if the steady-state error to a given

input 1s constant, the PI control reduces it to zero (provided that the compensated
svstem remains stable).

The system in Fig. 9-15, with the forward-path wransfer function in Eq. (9-29), will
now have a zero steady-state error when the reference input is a ramp function. However,
because the system is now of the third order, ir may be less stable than the original
second-order system or even become wnsfable if the parameters Kp and K, are not
properly chosen.

v

Rzl Eie) \‘ (BTY) q.’ Ms)
‘?(‘} AT e

Figure 815 Control system with Pl controller.



11-3-1 Time-Domain Interpretation and Design of Pl Control

A viable method of designing the PI control isto select the zero at s = -K,/K, so that it is relati
vely close to the origin and away from the most significant poles of the process; the values of
Kp and K, should be relatively small.

PIAO7|= &E = Li7tZ HSSEIRAS Jidots AXME 2 eICt d2{Lt Ge(s)2 BE 2| (K|
t Mot A EEltHE daet SSSHLA 255 e & UCL PLAO7|= 22822 MY
SIEHO|EZ BEyE A[AE2 ERNCo = il dSAztat 72 §8A1Zts ZHECH PL K07 &
2ot YHE2 SH0| JHHLE fF 7141 82 F==0Me= Bl BOX == s= K/K
SOl AEISIEH Koot K 2| efE2 B Bl WX & A dENSH= AO|Ct
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11-3-2 Frequency-Domain Interpretation and Design of Pl Control

K
K K (1 + ?PS)
Ge(s) = Kp +—= : ! (9-30) -

K/V0K, K/Kq 10K /K
o (rad/sec)

| Ggjan | (dB)

The Pl controller is essentially alow-passfilter,
the compensated system usually will haveado
wer rise time and longer settling time.

G (jesh (deg)

K ‘.
Fgure 18 Bode diagrum of the Pl controller. G.(5) « Kp + ! || o

90
AJI0K, K/Kp 10K /K
o (radisec)

The Bode plot of G (jw) 1s shown in Fig. 9-18. Notice that the magnitude of G (jw) at
@ = 00 18 20 log;,Kp dB, which represents an attenuation if the value of Kp is less than 1.
This attenuation may be utilized to improve the stability of the system. The phase of G (jw)
1s always negative, which is detrimental to stability. Thus, we should place the comer
frequency of the controller, @ = Kj/Kp, as far to the left as the bandwidth requirement

allows, so the phase-lag properties of G.(jw) do not degrade the achieved phase margin of
the system.
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Figure 818 Bode diagram of the Pl controller. G.(s) « Kp + -’i

The frequency-domain design procedure for the PI control to realize a given phase

1.

margin is outiined as follows:

The Bode plot of the forward-path transfer function G,(s} of the uncompensated
system is made with the loop gain set according to the steady-state performance
requirement.

The phase margin and the gain margin of the uncompensated system are
determined from the Bode plot. For a specified phase margin requirement, the
new gain-crossover frequency j, corresponding to this phase margin is found on
the Bode plot. The magnitude plot of the compensated transfer function must pass
through the 0-dB-axis at this new gain-crossover frequency in order to realize the
desired phase margin.

To bring the magnitude curve of the uncompensated transfer function down to 0
dB at the new gain-crossover frequency w;, the PI controller must provide the
amount of attenuation equal (o the gain of the magnitude curve at the new gain-
crossover frequency. In other words, set

’Gp(jw'g) Lm: ~20log,(KpdB Kp< 1 (9-31)

from which we have

KP = Io_lcP{ ja/l)ldg"l.zo KP< l (9'32)

Once the value of Kp is determined, it is necessary only to select the proper value of
K;to complete the design. As a general

guideline, K;/Kp should correspond to a frequency that is at least one decade,
sometimes as much as two decades, below w’g. That is, we set

K w,
K—’ = l—‘grad/sec (9-33)
P



Within the general guideline, the selection of the value of K;/Kp is pretty much at the
discretion of the designer, who should be mindful of its effect on BW and its practical
implementation by an op-amp circuit.

4. The Bode plot of the compensated system is investigated to see if the performance
specifications are all met.
The values of K; and K are substituted in Eq. (9-30) to give the desired transfer
function of the Pl controller.

tn

GC(S) — ’p -{»—T — (9‘30)



Based on the preceding discussions, we can summar ize the advantages and disadvantages
of aproperly designed PI controller as the following:

1. Improving damping and reducing maximum overshoot.
2. Increasing rise time.

3. Decreasing BW.

4. Improving gain margin, phase margin, and M, .

5. Filtering out high-frequency noise.

It should be noted that in the Pl controller design process, selection of a proper
combination of K, and K, so that the capacitor in the circuit implementation of the
controller is not excessively large, is more difficult than in the case of the PD
controller.



EXAMPLE 11-3-1
Consider the second-order attitude-control system discussed in Example 9-2-1. Applying the PI

controller of Eq. (9-24), the forward-path transfer function of the system becomes

4500KKp(s + K1 /Kp)
s%(s +361.2)

Gis) = G.{5)Gp(s) = (9-34)

Time-Domain Design

Let the time-domain performance requirements be
Steady-state error due to parabolic input 2ug(7) /2 < 0.2
Maximum overshoot < 5%
Rige time ¢, < 0.01 sec
Settling time 7o < 0.02sec

The parabolic-error constant 1s

v q td 4 ‘d
K, = lim $*G{s) = lim s* 4‘0(”},&‘"(’ +Ki/Kp)
s‘—*fJ 5_‘0 S"!\S +- 361v2) (9-35)
4500KK;
= — 12 46KK
361.2 J

The steady-state error due to the parabolic input ru, (1) /2 is

| 0.08026
Cyp = = —
S KK

(<02) (9-36)

Let us set K = 181.17, simply because this was the valve used in Example 9-2-1.
Apparently, 0 satisfy & given steady-state error requirement for & parabolic input, the
larger the K, the smaller K;can be. Substituting X = 181,17 in Eq. (9-36) and solving K, for
the minimum steady-state error requirement of 0.2, we get the minimum value of K; to be
0.002215, If necessary, the value of X can be adiusted later,



With K = 181.17, the characteristic equation of the closed-loop system is
s* +361.25% + 815, 265Kps + 815, 265K; = 0 (9-37)

Applying Routh's test to Eq. (9-37) vields the result that the system is stable for
0 < K;/Kp < 361.2. This means that the zero of G(s) at s = —K;/Kp cannot be placed
too far to the left in the left-half s-plane, or the system will be unstable. Let us place the zero
at —K;/Kp relatively close to the origin. For the present case, the most significant pole of
Gp(s), besides the pole at s = 0, is at —361.2. Thus, K;/Kp should be chosen so that the
following condition is satisfied:

Ky

< 361.2 (9-38)



With the condition in Eq (9'38) G{5) = G.{s)Gpls) = 45001.{@[5\_*% K_'f"lej (9-34)
s“{s+ 361.2)
M 3612 (9-38) 815,265K
> v Q) \ -y = F
Kp Gls) = — (9-39)
| s(s + 361.2)
where the term K/ Kp in the numerator is neglected when compared with the magnitude of
s, which takes on values along the operating points on the complex portion of the root loci _
that correspond to, say, a relative damping ratio in the range of 0.7 << ¢ < 1.0. Let us assume l o~
that we wish to have a relative damping ratio of 0.707. From Eq. (9-39), the required value *
of Kp for this damping ratio is 0.08. This should also be true for the third-order system with
the PI controller if the value of K,/ Kp satisfies Eq. (9-38). Thus, with Kp = 0.08, K; = 0.8;
the root loci in Fig. 9-19 show that the relative damping ratio of the two complex roots is
approximately 0.707. In fact, the three characteristic equation roots are at 4 Kp=008
T -1753+
1754
§ ==10.605, =1753 4+ j1754, and = 175.3 — j175.4
Kp=0 Kp=0
—_— »
-361.2 @ E()’-’;- =0 o
1":‘_ 10
Kp
¥ Kp=008

Figure 3-13 Root loci of Eq. (9-37)
with Ky /Kp = 10; Kp varies.

QKP

Recall characteristic Equation: 8
s° 1+ 361.25% + 815, 265Kps + 815, 265K; = 0 (9-37)




The reason for this is that when we “‘stand” at the root at —175.3 + j175.4 and
“look™ toward the neighborhood near the origin, we see that the zero at s = —10 is
relatively close to the origin and, thus, practically cancels one of the poles at s = 0.
In fact, we can show that, as long as Kp = 0.08 and the value of K;is chosen such that
Eq. (9-38) 1s satisfied, the relative damping ratio of the complex roots will be very
close to 0.707. For example, let us select Kj/Kp = 3; the three characteristic equation
roots are at

s = —5.145, —178.03 4 j178.03, and — 178.03 — j178.03

and the relative damping ratio is still 0.707. Although the real pole of the closed-loop
transfer function is moved, it is very close to the zero at s = —Kj/Kp so that the transient
due to the real pole is negligible. For example, when Kp = 0.08 and K; = 0.4, the closed-
loop transfer function of the compensated system is

0,(s) 65,221.2(s + 5) -
®,(s) (5+5.145)(s + 178.03 + j178.03)(s + 178.03 — j178.03) ]

Because the pole at s = 5.145 1s very close to the zero at s = —35, the transient response due
to this pole is negligible, and the system dynamics are essentially dominated by the two
complex poles.



Table 9-5 gives the attributes of the unit-step responses of the system with PI control
for various values of K;/Kp, with Kp = 0.08, which corresponds to a relative damping ratio
of 0.707.

The results in Table 9-5 verify the fact that PI control reduces the overshoot but at the
expense of longer rise time. For K7 < |, the settling times in Table 9-5 actually show a
sharp reduction, which is misleading. This is because the settling times for these cases are
measured at the points where the response enters the band between (.95 and 1.00, since the
maximum overshoots are less than 5%,

The maximum overshoot of the system can still be reduced further than those shown in
Table 9-5 by using smaller values of Kp than 0.08. However, the rise time and settling time
will be excessive. For example, with Kp = 0.04 and K7 = 0.04, the maximum overshoot is
1.1%, but the rise time is increased to 0.0182 seconds, and the settling time is 0.024
seconds.

For the system considered, improvement on the maximum overshoot slows down for
K; less than 0.08, unless Kp is also reduced. As mentioned earlier, the value of the capacitor
(5 is inversely proportional to K. Thus, for practical reasons, there is a lower limit on the
value of K.

TABLE 9-5 Attributes of the Unit-Step Responses of the System in Example 9-3-1
with PI Controller

Maximum ! !
Ki/Kp K; Kp Overshoot (%) (sec) (sec)
() () 1.00 52.7 0.00135 0.015
20 |.60 0.08 15.16 0.0074 0.049
10 0.80 0.08 9.93 0.0078 0.0294
S 0.40 0.08 717 0.0080 0.023
2 016 0.08 5.47 (0.0083 0.0194
| 0.08 0.08 4.89 0.0084 00114
(0.5 0.04 0.08 4.61 0.0084 00114
0.1 0.008 0.08 4.38 0.0084 00115




Fig. 9-20 shows the unit-step responses of the attitude-control system with PI control,
with Kp = 0.08 and several values of Kp. The unit-step response of the same system with
the PD controller designed in Example 9-2-1, with Kp = 1 and Kp = 0.00177, is also
plotted in the same figure as a comparison.

2.0
With PD control, K, = 1, K, = 0.00177
Vi |
0

0 0.01 0.02 0.03 0.04 0.05
Time (sec)



Frequency-Domain Design G(5) = G, {)Gls) = 45““’,‘(‘,"?3;":;""" (9-34)
A R ) vid

The forward-path transfer function of the uncompensated system is obtamed by setting
Kp = 1 and K7 = 0 in the G(s) in Eq. (9-34), and the Bode plot is shown in Fig. 9-21. The
phase margin is 22.687, and the gain-crossover frequency is 868 rad/sec.
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Let us specify that the required phase margin should be at least 65°, and this is to be
achieved with the PI controller of Eq. (9-30). Following the procedure outlined earlier in
Eqgs. (9-31) through (9-33) on the design of the PI controller, we conduct the following
steps:

L. Look for the new gain-crossover frequency wj, at which the phase margin of 657 is
rcalized. From Fig. 9-21, wi, is found to be 170 rad/sec. The magnitude of G(jaw) at '
this frequency is 21.5 dB. Thus, the PI contrpller should provide an atienuation of
-21.5dB at w; = 170 rad/sec. Substituting TG( jw;) r = 21.5dB into Eq. (9-32).
and solving for Kp, we get

Kp = 107160 o/20 — 10-215/20 _ 0,084 (9-41)

Notice that, in the time-domain design conducted earlier, Kp was selected to be
0.08 so that the relative damping ratio of the complex characteristic equation roots
will be approximately 0,707, (Perhaps we have cheated a little by selecting the
desired phase margin o be 65°. This could not be just a coincidence. Can you
believe that we have had no prior knowledge that, in this case, ¢ = 0.707
corresponds to PM = 6577)

2. Let us choose Kp = 0.08, so that we can compare the design results of
the frequency domain with those of the time-domain design obtained
earlier. Eq. (9-23) gives the general guideline of finding K; once Kp is
determined. Thus,

£ ey

«,Kp 170 = 0.08
« — 8 ——1 — . 2
Ki 10 10 1.36 (9-42)

n w! "w " w ' w

As pointed out carlier, the value of K is not rigid, as long as the ratio K;/ Kp is sufficiently
smaller than the magnitude of the pole of G(s) at —361.2. As it tams out, the value of K;
given by Eq. (9-42) is not sufficiently small for this system,

The Bode plots of the forward-path transfer function with Kp = 0.08 and Ky = 0.
0.008, 0.08, 0.8, and 1.6 are shown in Fig. 9-21.



Table 9-6 shows the frequency-domain
properues oI te uncompensatea system and the compensated system with various values

of K;. Notice that, for values of K;/Kp that are sufficiently small, the phase margin, M,, BW,
and gain-crossover frequency all vary little.

It should be noted that the phase margin of the system can be improved further by
reducing the value of Kp below 0.08. However, the bandwidth of the system will be further
reduced. For example, for Kp = 0.04 and K; = 0.04, the phase margin 1s increased to
75.7°. and M, = 1.01. but BW is reduced to 117.3 rad/sec.

TABLE 9-6 Frequency-Domain Performance Data of the System in Example 9-3-1
with Pl Controller

GM PM BW Gain CO Phase CO
K;/Kp K; Kp (dB) (deg) M, (rad/sec) (rad/sec) (rad/sec)
0 0 1.00 O 22.6 2.55 1390.87 868 o
20 1.6 0.08 e 58.45 1.12 268.92 165.73 o<
10 0.8 0.08 oC 61.98 1.06 262.38 164,96 o
5 0.4 0.08 5 63.75 1.03 258.95 164.77 b's
1 0.08 0.08 ¢ 65.15 1.01 256.13 164.71 o0
0.1 0.008 0.08 o 65.47 1.00 255.49 164.70 o




11-4 DESIGN WITH THE PID CONTROLLER
1. Consider that the PID controller consists of a PI portion connected in cascade with
a PD portion. The transfer function of the PID controller is written as

.

K A K .
G.o{s) = Kp+ Kps + TI = (1 + Kp1s) (Km + T’) (9-48)

The proportional constant of the PD portion is set to unity, since we need only
three parameters in the PID controller. Equating both sides of Eq. (9-48), we have

Kp = Kpx + K;iKn2 (9-49)
Kp = Kp1Kp2 (9-50)
Ky =Kp {9-51)

2. Consider that the PD portion only is in effect. Select the value of Kp, so that a
portion of the desired relative stability is achieved. In the time domain, this
relative stability may be measured by the maximum overshoot. and in the
frequency domain it is the phase margin.

e
.

Select the parameters K and Kp; so that the total requirement on relative stability
is satisfied.

As an alternative, the PI portion of the controller can be designed first for a portion of
the requirement on relative stability, and, finally, the PD portion 1s designed.



TABLE 9-10 Frequency-Domain Performance of System in Example 9-4-1 with PID Controller

GM PM BW A I Maximum

Kps K (dB) (deg) M, (rad/sec) (sec) (sec) Overshoot (%)
1.00 0 >0 58.45 1.07 2607 0.0008 0.00255 11.37
0.45 6.75 oc 68.5 1.03 1180 0.0019 0.0040 5.6

0.40 6.00 bW 69.3 1.027 1061 0.0021 0.0050 5.0

0.30 4.50 o's 71.45 1.024 1024 0.0027 0.00303 4.8

0.20 3.00 b 73.88 1.031 528.8 0.0040 0.00404 4.5

0.10 1.5 o 76.91 1.054 269.5 0.0076  0.0303 5.6

0.08 1.2 00 77.44 1.065 216.9 0.0092 0.00469 6.5




EXAMPLE 9-4-1

Consider the third-order attitude control system represented by the forward-path transfer function
given in Eq. (9-19). With K = 181.17, the transfer function is

G, (s) 2.718 x 10°
L=
P s(s + 400.26)(s + 3008)

(9-52)

Time-Domain Design
Let the time-domain performance specifications be as follows:
. 2 \ -
Steady-state error due 0 a ramp input #“u,{r)/2 < 0.2
Maximum overshoot < 5%
Rige time z, < 0.005 sec

Settling time z; < 0.005 sec

We realize from the previous examples that these requirements cannot be fulfilled by
either the PI or PD control acting alone. Let us apply the PD control with the transfer
function (1 4+ Kpys). The forward-path transfer function becomes

~ 2.718 x 10°(1 + K s)
 s(s + 400.26)(s + 3008)

G(s) (9-53)



Table 9-3 shows that the best PD controller that can be obtained from the maximum
overshoot standpoint is with Kp; = 0.002, and the maximum overshoot 1s 11.37%. The rise
time and settling time are well within the required values. Next, we add the PI controller,

and the forward-path transfer function becomes

5.436 x 10°Kpy (s + 500)(s + Kpo /Kp2)

Gipl = s2(5 + 400.26)(s + 3008)

(9-54)

Following the guideline of choosing a relatively small value for Kjo/Kps, we let

K2 /Kpy = 15. Eq. (9-54) becomes

5.436 x 10°Kpy (s + 500)(s + 15)

s2(s + 400.26)(s + 3008)

TABLE 9-3 Time-Domain Attributes of the Third-Order System in Example 9-2-2
with PD Controller

G{s) =

%0 Maximum l, Iy
Kp Overshoot (sec) (sec) Characteristic Equation Roots

0 78.88 0.00125 0.0495 —3293.3, —57.49 £ j906.6
0.0005 41.31 0.00120 0.0106 —2843.07, —282.62 £+ j936.02
0.00127 17.97 0.00100 0.00398 —1523.11, —942.60 + 946.58
0.00157 14.05 0.00091 0.00337 —805.33, —1301.48 £+ j1296.59
0.00200 11.37 (0.00080 0.00255 —531.89, —1438.20 = j1744.00
0.00500 17.97 (0.00042 0.00130 —191:71, —1608.29 + j3404.52
0.01000 314 0.00026 0.00093 —96.85, —1655.72 = j5032

0.05000 61.80 0.00010 0.00144 19.83, -1694.30 + j11583

(9-55)



Table 9-9 gives the time-domain performance characteristics along with the roots of the
characteristic equation for various values of Kp,. Apparently, the optimal value of Kp; is in

the neighborhood of between 0.2 and 0.4.

TABLE 9-9 Time-Domain Performance Characteristics of Third-Order Attitude Control System
with PID Controller Designed in Example 9-4-1

Maximum t, I, Roots of

Kp> Overshoot (%) (sec) (sec) Characteristic Equation

1.0 1.1 0.00088  0.0025 -135.1 -533.2 -1430 &+ j 1717.5
0.9 10.8 0.00111 0.00202 —15.1 —538.7 —1427 + j 1571.8
0.8 9.3 0.00127  0.00303 —15.1 ~546.5 —1423 £ j 1385.6
0.7 8.2 0.00130  0.00303 —15.1 —~558.4 —1417 + § 1168.7
0.6 6.9 0.00155  0.00303 —15.2 —-579.3 —1406 + j 897.1
0.5 5.6 0.00172  0.00404 —15.2 —-629 —1382 + j 470.9
0.4 5.1 0.00214  0.00505 —15.3 —1993 —700 + 2154
0.3 4.8 0.00271 0.00303 ~13.3 —2355 -519 4 j 263.1
0.2 4.5 0.00400  0.00404 —15.5 -2613 -390 £ j 221.3
0.1 5.6 0.00747  0.00747 ~16.1 ~284 -284 + j 94.2
0.08 6.5 0.00895  0.04545 —16.5 —286.3 —266 + j 4.1

Selecting Kp; = 0.3, and with Kp; = 0.002 and Kj; = 15Kp; = 4.5, the following
results are obtained for the parameters of the PID controller using Eqgs. (9-49) through (9-51):.

K=K —d5
Kp=Kp + KmKp =03+0.002 x4.5=0.309 (9-56)
Kp = KpiKpy = 0.002 x 0.3 = 0.0006

Notice that the PID design resulted in a smaller K and a larger K, which correspond to
smaller capacitors in the implémenting circuil.



Fig. 9-24 shows the unit-step responses of the system with the PID controller, as well
as those with PD and PI controls designed in Examples 9-2-2 and 9-3-2, respectively.
Notice that the PID control, when designed properly, captures the advantages of both the
PD and the PI controls.

PD control, Ky = 1, Ky, = 0.002

PID control. K = 0.309. K; = 4.5, K, = 0.0006
/\“\{

Pl control, Kp=0.075, K;=0.15

0.3

06 -

04

0 0.02 0.04 0.06 0.08 0.1

Time {sec)

Figure 9-28 Step responses of the system in Example 9-4-1 with PD, PL, and PID controflers,



Frequency-Domain Design

The PD control of the third-order attitude control systems was already carried out in
Example 9-2-2, and the results were tabulated in Table 9-3. When Kp = 1 and K = 0,002,
the maximum overshoot is 11.37%, but this is the best that the PD control could offer.

Using this PD controller, the forward-path transfer function of the system is

2.718 x 10°{1 + 0.002s)

Gls) = 555+ 400.26)(s 7 3008)

(9-37)

and its Bode plot is shown in Fig. 9-25, Let us estimate that the following set of frequency-
domain criteria corresponds to the time-domain specifications given in this problem.

Phase margin > 70°
M, <11
BW > 1.000 rad/sec

From the Bode diagram in Fig. Y-25, we see that, to achieve a phase margin of 707, the new
phase-crossover frequency should be cu; = 811 rad/sec, at which the magnitude of G{jw) is
7 dB. Thus, using Eq. (9-32), the value of Kp; is calculated to be

Kps = 1077/20 =045 (9-38)

Notice that the desirable range of Kp, found from the time-domain design with Kp; /Kp; =
15 is from 0.2 to 0.4. The result given in Eq. (9-58) is slightly out of the range. Table 9-10
shows the frequency-domain performance results with Kp = 0.002, K7 /Kp; = 15, and

several values of Kpy starting with 0.45. It is interesting to note that, as Kp; continues to
decrease, the phase margin increases monotonically, but below Kp; = 0.2, the maximum
overshoot actually increases. In this case, the phase margin results are misleading, but the
resonant peak M, is a more accurate indication of this.
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Figure 9-25 Bode plot of the system in Example 9-4-1 with PD and PID controllers.



11-5 DESIGN WITH PHASE-LEAD AND PHASE-LAG CONTROLLERS

ZEo #EoA EH PD MO7|= 09 S HE{O|12, PI MO7|= XY S EHO|H, PID 07| = Al
Ol 7|2l m2tole Zrof 2t CiF S0t E= AL HEHE & &= UCH DYSHEHE 2= T&H 07|
(phase-lead controller)2t £ 27|= St=0|, 0| Fo-B A0 A Fo| {3 A|AHO| X SSH7| [[H-E-Ol':f.
MY ST E = ESH X[ A X O 7| (phase-lag controller)2F 22|, O|= Cf-23t= 9| AH0]

90| MSSt7| MZO|CH CHE Y2 BHsIH, 1Y S HE = 40| &

O7| Wj=0f ®&-2[E Mo7[efne SEICH MY S1F EHe= f40| 22| 2407 &0 #fa-XH A
ol7|2tn ke =EIC},

The transfer function of a simple lead or lag controller is expressed as

s+2z,

G.(s)=K,
s+ p,

(11-69)

O7IM MO{7[= p, >z, @ I 1] S E= HY0[, p, <z, @ MY S EE

r|r
o
il



The op-amp circuit implementation of Eq. (11-69) is given in Table 6-1g of Chap. 6 and
is repeated in Fig. 11-30 with an inverting amplifier. The transfer function of the circuit is

—— P~
-

C
I e \
R i E S 4 s
+ AN R G((s): °(s) :-C—l Rllc' (11-70)
E. Ry —WV E.. (S) Cz s+
+ R,C,
. Comparing the last two equations, we have
cis K =C,/C,
Figure 1130 Op-amp circuit implementation of G(s)=K, m:- i z,=1/RC, (11-71)
p,=VRC,

We can reduce the number of design parameters from four to three by setting
C=C, =C,. Then Eq. (11-70) is written as

G‘(s)=&(|+k,cs]

R\ 1+R,Cs
=l(”“T‘) (11-72)
a\ 1+Ts
where

R,

- (11-73)
R,

T=RC (11-74)



11-5-1 Time-Domain Interpretation and Design of Phase-Lead Control
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11-5-2 Frequency-Domain Interpretation and Design of Phase-Lead Control

The Bode plot of the phase-lead controller of Eq. (11-75) is shown in Fig. 11-32. The two
corner frequencies are at @ =1/aT and @ =1/T. The maximum value of the phase, ¢_, and
the frequency at which it occurs, @, are derived as follows. Because @, is the geometric

N 20 log gt mean of the two corner frequencies, we write
g slope log, @ = (l —+lo ) 11-76
2 Sy B0, = | 10g, —+log,, (1176)
0 —_— : Thus,
1 | ©
al T s (11-77)
w - -
f T
” Sl = ' To determine the maximum phase ¢, , the phase of G ( jw) is written
',31 ‘ﬁ\x 4G (jw)=¢(jw)=tan™ @aT - tan™ @T (11-78)
& 9 = v — \ ,
g I i Z I+ joT from which we get
90 N ! :
: O 1 . waT —-oT
aT T tang(jm)= (11-79)
 (radsec) |+ (@aT ) (@T)
Figure 1132 Bode plot of phase-lead controller G, (s)=a > +':;': a>1. Substituting Eq. (11-77) into Eq. (11-79), we have
s
a-1 a-—1
tang =—— OF sing, =— (11-80)
On 2Va ¢ a+l

1+sing,
1-sing,

a=
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EXAMPLE 11-5-1



EXAMPLE 11-5-2



11-5-3 Effects of Phase-Lead Compensation
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11-5-4 Limitations of Single-Stage Phase-Lead Control
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11-5-5 Multistage Phase-Lead Controller

When the design with a phase-lead controller requires an additional phase of more than 907,
a multistage controller should be used. Figure 11-42 shows an op-amp-circuit realization of
a two-stage phase-lead controller, The input-output transfer function of the circuit is

PP

G (s)= E,(s) _ R,l(, Ri(,

E.(s) |54 s+

R,C R,C
_R,R,[1+RCs ][HR‘(S\] (11-119)

RR,\1+R,Cs \ 1+R,Cs

or
G.(s)= 1 l+u.,'l,s ](l-i—a:‘.l.,s} (11-120)
aa,\ 1+1s 1+T,s

wherea, =R /R,,a,=R,/R,, T, =R,C,and T, =R,C.
MZEF A A CHEF T X 07| A= B2 =0 EEE 2850F stE= HAFLE Eoh o8 Ii2t0| 571 &Y
o AA 7t 21tH0|Ct O & &H 2th M| 07| 8%

ofRZ oA 7B 2&HO0|X| Xoitt. 0| 82 T39S
AL CHet 24249 @FE UEAF|=F 20 Mo7|2] A BHA mietojEHEs d8e = A2H, LS

2 otH =Lt

mujru

LIHX| 27201 BJRAZ| == HO7|2] =M A
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11-5-6 Sensitivity Considerations
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Figure 11-45  Sensitivity functions of sun-seeker system in Example 11-5-2.
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11-5-7 Time-Domain Interpretation and Design of Phase-Lag Control
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11-5-8 Frequency-Domain Interpretation and Design of Phase-Lag Control

The transfer function of the phase-lag controller can again be written as

: 1+aTs
G (s)= — (a<l)
‘ 14+ Ts
the maximum phase lag is | |
4 G=1 = ,
@,, = sin '(‘ ) (a<l) 0 ' ry
a+l D
= n, S ‘
= o
Bode M2 0|8380] X|AK|017|2 MAHste IHE - 0 dBcaesope
Qorstel Creat Zet, T
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Figure 1149 Bode diagram of the phase-lag controller. G (5)= Ll 1L a<l,
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11-5-9 Effects and Limitations of Phase-Lag Control
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11-5-10 Design with Lead-Lag Controller
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11-6 POLE-ZERO-CANCELLATION DESIGN: NOTCH FILTER
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Fgure 11-57  Pole-zero configuration and root loc of inexact cancellation
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11-6-1 Second-Order Active Filter
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Figure 11-59  Op-amp circuit realization of the second-order transfer function.



11-6-2 Frequency-Domain Interpretation and Design
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EXAMPLE 11-6-1



11-7 FORWARD AND FEEDFORWARD CONTROLLERS
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Figure 11-65 (a) Forward compensation with series compensation. (b) Feedforward compensation
with series compensations.
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11-8 DESIGN OF ROBUST CONTROL SYSTEMS
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11-9 MINOR-LOOP FEEDBACK CONTROL

§OM =22t MOYEI= E5F HEXNO7|E MOAALES = B=L HEF 20| =75t ALEUC HIF
BN 77 20| ZhEtohr| =0 7t8 22| AASEIX|2 A A" S| A0 Wl OF 11-2(b)2F £0] =
F OEHZDO X7 F7I5ts AO| 2= RE|SIE. O£ S8 2UEKEA = S8 =2 285
EAel EHi=E LEYMAA HREZA[LAES] HIES hHAZ]7] 2I6l dc 20| AT HZECH Z2H
S HHO Qs UANHLE BHEANA TEAE = ULE O|2H2E PID M 0f7|Lt &l& S X| A
0{7|20| 2ute| Xt0|= UMK = FFZ LEMK O 7|2 AFEE 4 ULE OfH =AM = 7R 2

WSRO 7} B S 2B F Q|2 mBTt Lf R THat0|E| o] B UL AAHS 0|2 4 YLt

rnr) elr) wr) CONTROLLED vir)
:(\/) :( )| PROCESS G pl) >
A
CONTROLLER

G (5)




H
Il
E

>
>
i

10

oy

iva

M

—

rx

Of

N

-0

of

T

-1

ofn

=
ot

1o

a

Bl

>t

[

>

oo

Of

rr

[0

i)

rir

40

>
Of

ot
=

M

ne

N

Ho

of

R

II1h

NSO E HBE 4 UCH CHA| Lol S2AIS0| 0]20] TEWE O] A|AHO| TSASO| [j4HO= 74
AL

L 2=z S8, 7[AN 2 #Hel2)

2
for
N
1
HT
2

MOl Mz 2 HBIA[F|= 4| AFEE &= QUCH O E
= MOA|AES EFM 0|}
R(s) /H\ Els) /_\\‘ Y(%)
-—»K —»(\ > G(5) »
i A/ : \1'/

Figure 11-75  Control system with tachometer feedback.



The closed-loop transfer function of the system is

Y(s) ;

R(s) s+ (2w, +K0))s+;

and the characteristic equation is

s+ (28w, + Ko )s+ @] =0
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