Computer Architecture and
Microprocessor

ARl

donghani@khu.ac.kr

Computer Category

Desktop (PC, Workstation)
— Optimized for single user (personal computer)
— Applications > memory size, disk space, footprint
— Design goal: max performance for a given power/price
Servers
— Old story: minicomputers, mainframes, supercomputers
— Multiple users/applications
— Reliability(Dependability), availability (percent of up-time) critical, expandability
— Throughput is the main performance measure

— Design goal: carry large workloads: either single complex applications (e.g., scientific
applications) or many small jobs (e.g. Web server)

Notebook computers
"Mobile Desktop”
— Battery life, low power, compact
Embedded computers
— Application specific, tuned, price and power sensitive, volume
— Often with real-time computing constraints
— System on Chip (SoC) — on die CPU core + custom hardware
— Examples: mobile phone, PDA, playstation, set-top box, digital appliances
Ultra-Mobile Personal Computers (UMPC)
— Power envelope (no ventilation)
— User interface customization

Function

 All computer functions are comprised of
four basic operations:
— Data processing
— Data storage
— Data movement
— Control

Computer - 0~ R

<

\1
Clock ‘l\ !
| i
- Registers ' : BEEI/;D ‘il
reset \ ~Control ’ - KBD/Butto ’
Z) - Mouse
N~ - USB ‘l\
//‘,\ - Serial ‘ '
- Parallel '
Memory x il - Network ‘
- Modem \
DC Power ron \"
v/ - ADC
\ VALY - Motor
interface

Components of a Computer

e CPU : Registers + ALU(arithmetic logic unit) + Control Unit

* Bus

Data and address, control

* Memory

Internal(on-chip) and external
ROM(PROM, EPROM) and RAM
DRAM(SDRAM, DDR RAM) and SRAM
Cache, Main memory, Virtual memory

Serial, Parallel, USB

Graphic display (Frame memory + DAC(R,G,B) + Controller)
Storage (HDD, CD)

Key board (button), Mouse, ...

ADC, DAC

« DC .Isower

5v,33v
9v,12v, 18 v

11

Computer Architecture

Architecture:

— The collection of processor’s (or a system'’s) features
as they are seen by the “user”

Registers data width (8/16/32/64)
Instruction set

Addressing modes and methods (Segmentation,
Paging, etc...)

Memory controllers and hierarchies
System interconnects such as computer buses
Multi-processing

Program Concept

» Hardwired systems are inflexible

* General purpose hardware can do
different tasks, given correct control
signals

* Instead of re-wiring, supply a new set of
control signals

12

What is a program?

» A sequence of steps

» For each step, an arithmetic or logical
operation is done

» For each operation, a different set of
control signals is needed

Von Neumann machine (1940)

cru
Input
+—
mfy ArmITwic Lege deice
Uit (ALY
oy —
R ismwes |
naracthnes)
Comenl — device

.
RN Vor N Ned 0frdl . rade Lpoaste Anchy Utoos (nd othert) . it £ il land ST

13

Von Neumann Architecture

a design model for a stored-program digital computer that uses
a processing unit and a single separate storage structure to
hold both instructions and data

Memory
Arithmetic A B

Logic
Control [9!

Accumulator

% R

| Input | | Output |

cf) Harvard architecture : PM+DM

CPU (central processing unit)

e CPU must
— Fetch instructions
— Interpret instructions
— Fetch data
— Process data
— Write data

14

Access (Address and Data)
» Read

Device
A Enablg V,=5v
CPU P Data l T
D€ o 1
OVJ 1
» Write et
evice
A Enable V,.=5v
CPU Datg l T
o sy i L
OVJ 1

Enable
Data i

Lo |

Addressing

Device 1

Enable 1 l v, =5v
CPU D Data j
T

Device 2

Enable 2 V,.=5v
Data i T
1
T

100 devices = 100 enable lines
1GB memory = >1,000,000,000 enable lines!

“Address decoding” : 32 address lines = 4G enable lines

15

Address Decoder (2 to 4)

[= = =A 2-to-4 linc singlc bit decoder = = = = Truth Table

|
| |
1 T D i 0 0 0
| :
! : D> Minterm l]_(luui\m
| | Do-A1Ag
|
|
|

4 l Di-AlAg
|) | Ds D2-ArAg

i 4 Di-Ar Ao

Decoding Example

» Address space : 6 bits (0x00 ~ Ox3F)
e Given address : 0x16 = Ob 01 0110

A ——
Al
A2

AB———=C
A4

Ab——(O

16

CPU

A0

Al

DO

D2

Bus Interface

3-bit CPU

]
Enable
Device 0 Device 1 Device 2 Device 3
DO DO DO DO
D
0 T T T T
1
Decoder |, 1
S Device 0 Device 1 Device 2 Device 3
D1 D1 D1 D1
T T T
b
Device 0 Device 1 Device 2 Device 3
D2 D2 D2 D2
T T T

Instruction Subcycles and Pipelining

oORwd -~

EE & EOE

Fetch instruction from memory
Read registers while decoding the instruction
Execute the operation or calculate a memory address
Access an operand in data memory

Write the result into a register

, G & EEIE

.

t

-

| F | o | Ex Mem]

| IF | 1D
1 l F

Instruction Pipelining

EX
D

EE = EIRE

Harvard architecture

1 WB
X |MEM WB

EX MEM WB

->"One instruction / cycle”
“Single clock cycle execution”

18

Donghan Kim

CPU

Functional Units + Registers + Control Unit

Functional Units
— ALU = Arithmetic and Logic Unit
— Could have many functional units (some special-purpose, e.g., multiply,...)
Registers
— Small, temporary storage
— Operands and results of functional units
Control Unit
— Orchestrates execution of the program
— Program Counter (PC) : contains the address of the next instruction to execute
— Reads an instruction from memory (at PC)
— Interprets the instruction
— Generates signals that tell the other components what to do
— Instruction may take many machine cycles to complete

Word Size
— Number of bits normally processed by ALU in one instruction
— Also width of registers

ALU (arithmetic logic unit)

e Does the calculations

— Integer arithmetic operations (addition, subtraction, and
sometimes multiplication and division, though this is more
expensive)

— Bitwise logic operations (NOT, AND, OR, XOR)

— Bit-shifting operations (shifting or rotating a word by a
specified number of bits to the left or right, with or Wlthout
sign extension)

cf) FPU (floating point unit)

Register Register

Control

Flags (Status register)

Register

20

Registers

CPU must have some working space (temporary storage)
Number and function vary between processor designs

General purpose registers (accumulator)
— 32x8 registers (RO~R31) in AVR

— 6x32 registers in Pentium

— 14x64 registers in i7

Program counter (instruction pointer)

Status (flag) register
— Carry, Zero, Negative, Overflow, Sign, Interrupt,...
— For conditional branch
7 6 5 4 3 2 1 0
I + [v [v [s [v [N [Z C | sreG

Stack pointer

HW control registers

The Cortex®-M3 processor PMO0056

In Thread mode, the CONTROL register controls whether the processor uses the main
stack or the process stack, see CONTROL register on page 21. In Handler mode, the
processor always uses the main stack. The options for processor operations are:

Table 1. Summary of processor mode, execution privilege level, and stack use

options
Processor Used to Privilege level for
. Stack used
mode execute software execution
Thread Applications Privileged or unprivileged“) Main stack or process stack(")
Handler Exception handlers | Always privileged Main stack
1. See CONTROL register on page 21.
21.3 Core registers
Figure 2. Processor core registers
o N
RO
R1
R2
) R3
Low registers
R4
R5
R6 General-purpose registers
R7
>_
R8
R9
High registers R10
R11
R12
N— - .
Stack pointer SP (R13) PSP* MSB* | *Banked version
; - ' of SP
Link register LR (R14)
Program counter PC (R15)
PSR Program status register)
PRIMASK
FAULTMASK Exception mask registers > Special registers
BASEPRI
CONTROL CONTROL register
j—
MSv48364V1

14/156 DoclD15491 Rev 6 ‘Yl

Stack

Last In First Out (LIFO) buffer
Allocated memory

Stack pointer
.

Push § //Pop
Return address SP>
——
— call, ret H
Save/restore registers
— push, pop

Parameter passing
Local temporary variables in subroutines

Instructions

Fundamental unit of work

Constituents
— Opcode: operation to be performed
— Operands: data/locations to be used for operation
— e.g.) ADD RO, 3
Encoded as a sequence of bits (just like data!)
— Sometimes have a fixed length (e.g., 16 or 32 bits)
— Control unit interprets instruction

Generates control signals to carry out operation

- Atorlrlﬂc: operation is either executed completely, or not
at a

Instruction Set Architecture (ISA)
— Computer’s instructions, their formats, their behaviors

22

Instruction Set

Arithmetic instructions such as add and subtract
Logic instructions such as and, or, xor, and not

Data instructions such as move, input, output,
load, and store

Control flow instructions such as gofto, if; call,
and return

CISC and RISC

— Each instruction can execute several low-level operations (microcode).

— In the early days of the computer industry, programming was done in assembly
language or machine code, which encouraged powerful’and easy to use
instructions.

— An important force encouraging complexity was very limited main memories.
— CPUs also had relatively few registers. (Pentium: 8)
— eg.) x86, 8051

RISC

— load-store architecture

— One instruction per cycle

— Large number of general purpose registers (AVR: 32)
— Limited and simple instruction set (Emphasis on optimizing the instruction pipeline)
— Register to register operations

— Few, simple addressing modes

— Few, simple instruction formats

— Hardwired design (no microcode)

— Fixed instruction format

— More compile time/effort

— eg.) AVR, ARM, SPARC(Sun)

The terms RISC and CISC have become less meaningful with the

continued evolution of both CISC and RISC designs and implementations.

26

Numbers

Only binary numbers (0,1)
No minus sign

Integer

— Fixed point

— Bits (8/16/32) - byte/short word/long word
— signed/unsigned - negative number?

Floating point (real)

Endianness

Byte ordering in memory > CPU
MSB and LSB
Big-endian : big end first
Little-endian : little end first

Registr Regiser

Memxy | OAOBOCOD 0A0BOCOD Memory

Byte-addressable CPU
File

e.g.) x86(PC) : little-endian, PowerPC : big-endian
ARM : Bi-endian

27

Donghan Kim
ARM : Bi-endian

Signed Integer

e 1's complement
— Bitwise NOT (Boolean complement)
— 1:0000 0001, -1: 1111 1110

C TepD=1111 11117 +127 = 0111 1111
— 0: 0000 0000, -0: 1111 1111?

, +3 = 0000 0011
e 2's complement

+2 = 0000 0010

— Negating : 1's complement + 1 +1 = 0000 0001
« 1 =0000 0001 +0 = 0000 0000
* 1's complement gives 1111 1110 -1 =1111 1111
* Add1to LSB 11111111 > -1 -2 = 1111 1110
— Arithmetic works easily and consistently -3 =1111 1101

e 1+(-1) = 0000 0000
« 0-1 = 0000 0000 — 0000 0001 = 1111 1111

0000 0000 - ~128 = 1000 0000
— The MSB is a sign bit.

— 8 bits : -128~127, 16 bits : -32768~32767
— 8 bits integer to 16 bits
* Signed extension

-1(8) > -1(16) : 1111 1111 - 1111 1111 1111 1111
* Unsigned extension
255(8) > 255(16) : 1111 1111 - 0000 0000 1111 1111

— Oxff (1111 1111) = -1 or 2557

Floating Point

Very large and very small numbers

— Large values: 6.023 x 10?3 -- requires 79 bits

— Small values: 6.626 x 10-3* -- requires >110 bits
Numbers with fractions

— Could be done in pure binary

— 1001.1010 = 23 + 20421 + 23 =9625

— Where is the binary point?

Use equivalent of “scientific notation”: F x 2F

IEEE 754 standard (32-bits) — single precision

1 8 bits 23 bits
‘s| Exponent | Fraction (mantissa, significand)
N=(-1)sx 1.fraction x 2(exponent-127) (1 < exponent < 254)

e.g.) 1 01111110 01000000000000000000000

— Sign is 1: number is negative

— Exponent field is 01111110 = 126 (decimal)

— Fraction is 0.010000000000... = 1x22 = 0.25 (decimal)
— Value = -1.25 x 2(26-127)) = -1 .25 x 2-1 = -0.625
Double precision (64 bits)

— 11-bit exponent field, 52-bit fraction field

Character

For text
A character is also a number.

ASCII code : 1 byte (7 bits; 0~127) o b
- A=0x41 % valy T4
- A+1="B’ (SRS
82 : 11172%t 25 vad 5 m
— 2 bytes code b B
— 2ME ') OxbOal PR -
« KSC5601-1987 : 2350k} e
_ X3S bS] fo
=H o ' " ™
. KSC5601-1992 & wl% "
Unicode ¢ &l 1s
— 0~Ox10FFFF Wl

— 2 bytes - 65535 2%}
- 32 2dY 11172%} HiY
- o2 =2 : Hangul Jamo
— KSC5700

String

— Sequence of characters, terminated with NULL (0)

P
m
Az

o
o

aH
&

&)
2 -

&
o

a

e

GweAON

-
T I A I

ST T EFEE SRS 5N
FENENSRUFSCOEN

FEXrsyryu=yx=

-
-

Bus

All the units must be connected
Different type of connection for different type of unit
- CPU
— Memory
— Input/Output
Single and multiple BUS structures are most common
Usually broadcast
Control/Address/Data bus + Power/GND lines
What do buses look like?
— Sets of wires
— Parallel lines on circuit boards
— Ribbon cables
— Strip connectors on mother boards

CPU | Memory ||| see | Memory I | “I | |||

Control Lines

L1 [ITT L1 1 III|

Address Lines

Data Lines

31

Computer Modules and Bus

Instructions Address >
Data CPU St

Bus

» Data
— Carries data (including instructions)
— Width is a key determinant of performance: 8, 16, 32, 64 bits
+ AVR: 8 bits
» Address
— Identify the source or destination of data

— CPU needs to read an instruction (data) from a given location in
memory.

— Width determines maximum memory capacity of system.
» Pentium : 32 bits (4G address space)
AVR : 16 bits (64K)
+ Control
— Memory read/write signal
* AVR:/RD, /WR, ALE
— Interrupt request
+ AVR:INTO:7
— Clock signals

Bus Arbitration

More than one module controlling the bus
CPU1, CPU2,.., and DMA controller
Only one module may control bus at one time

Arbitration may be

— Centralized
+ Single hardware device(bus controller, arbiter) controlling bus
access
« May be part of CPU or separate
— Distributed
» Each module may claim the bus
 Control logic on all modules

cf) PCI (Peripheral Component Interconnection)

35

Synchronous Ti

:‘ Tl—’<—T1—><—TS_,:

| Clock l { \ / \ /

w

1
Stable address >_

| | | \
Address | — X '
enable : 1 : \

Data [— «

Read) lines T Valid dat
cycle : 1 :
Read | !/ \ \)

cycle

[}
[}
Vrite i
}
|

I

|

I

|

|

| 1

Data 1 | -
Write) lines W—KI Valid dath

I

\ [
I

I

Address
lines

Read

Data
lines

Acknowledge

Asynchronous Timing
— Read Diagram

— Stable address D —

)\ %
{ Valid data >—
\ /

36

Memory

Internal(on-chip) and external
ROM(PROM, EPROM, FLASH) and RAM
DRAM(SDRAM, DDR RAM) and SRAM

Cache, Main memory, Virtual memory

RAM (Random Access Memory)

Misnamed as all semiconductor memory
Is random access

Read/Write
Volatile

Temporary storage Sequential access
Static or dynamic

1 2 3 4 5 6 7 8

Random access
L A
1 3 7 2 8 6 4 5

40

DRAM vs SRAM

Both volatile

— Power needed to preserve data
Dynamic cell

— Bits stored as charge in capacitors
Charges leak : Needs refresh
Simpler to build, smaller (one transistor + one capacitor)
More dense

Less expensive

— Larger memory units

Static

— Flip-flop (4 to 6 transistors)

— Faster

— Cache
Access time and cost (for 2010)

— SRAM : 1.5 ns, $6,000 per GB

— DRAM : 40 ns, $60 per GB

— Disk : 3 million ns, $0.3 per GB

SDRAM (Synchronous DRAM)

Access is synchronized with an external
clock

Since SDRAM moves data in time with
system clock, CPU knows when data will
be ready

Burst mode allows SDRAM to set up
stream of data and fire it out in block

DDR-SDRAM sends data twice per clock
cycle (leading & falling edge)

41

SDRAM Read Timing

TO Tl T2 T3 T4 TS T6 7 T8

pat N I N S I
COMMAND (IIEADAH it Imr H nor Inor H wor Inm H wor Innr —

DQs

I]

I I I

: : : \mAAXmUI‘MXmUI‘AszM)—:
| [1 |

Figure 5.13 SDRAM Read Timing (Burst Length = 4, CAS latency = 2)

Types of ROM

« Written during manufacture

— Very expensive for small runs
* Programmable (once)

— PROM

— Needs special equipment to program
* Read "mostly”

— Erasable Programmable (EPROM)
* Erased by UV

— Electrically Erasable (EEPROM)
* Takes much longer to write than read

— Flash memory
* Erase whole memory electrically

42

Von Neumann Bottleneck

» The separation between the CPU and memory
- the limited throughput (data transfer rate)
between the CPU and memory compared to the
amount of memory

« In most modern computers, throughput is much

smaller than the rate at which the CPU can work.

- The CPU is continuously forced to wait for
needed data to be transferred to or from
memory.

« The performance problem is reduced by a cache
between the CPU and the main memory.

43

* Fast CPU < Slow main memory
* Small amount of fast memory

Cache

* Between normal main memory and CPU

e External or internal

« Data and instruction cache € Harvard architecture

* Cache miss/hit
e Intel Core i7

— 32 KB L1 instruction and 32 KB L1 data cache per core
— 256 KB L2 cache (combined instruction and data) per core
— 8 MB L3 (combined instruction and data) shared by all cores

Word Transfer

Cache

Block Transfer

r~An

Main Memory

IO

* Programmed IO /
— CPU has direct control over I/O
 Sensing status
» Read/write commands
* Transferring data
— CPU waits for I/O module to complete operation
— Wastes CPU time

» DMA (direct memory access)

— Memory/IO accesses are done independently of CPU.
IO to IO, IO to memory, memory to memory
A DMA controller(HW) is required. (Bus arbitration)
Fast block transfer
No burden to CPU

Addressing IOC‘v—~j

Memory- mapped IO

— Decoding : aress bus—+ RAW(mema ry
e I0-mapped IO
— IO has its own address space. (A CPU has extra IO read/write
pins)
— Decoding : address bus + R/W(IO)
— A CPU has IO instructions (ex: in, out)
1 in(ax, 0x200,)(out 0x300, ax_

Generally slow

45

Donghan Kim

Donghan Kim

Donghan Kim

Interacting with external devices
o ——
» The processor cannot afford to continually watch

device to determine if it has some information and is
ready to receive/transmit information.

/4
? 14 <)

o[Interrupt
- o)
Prof essopfrenoauest '\%ice

—

Polling
(polled IO, software-driven IO)

poll [poul] vt. @ (£ E) SES SN
ol 70| S=0tEh@\ 2| 0l 8 Z=ALE StCf
T e — - .

Refer to actively sampling-the status of an external device as a
synchronous activity

Refers to the situation where a device is repeatedly checked for
readiness.

Simple, but inefficient

Polling loop Processor ¢

(#S) EXLL® 8A

evl stat==

)\

i%evice 1 é;

47

Interrupt

* interrupt [inteript] vt. @ 7t 2 9FC}, K X|S}CE 8l|E &0}, (0|0F7] MY £)
SEHAIZ|CHin; during). @ (W& [P S) S, A EHSHCL [(AFE]) 7t=2
17| SHCt. — T i
* An asynchronous signal from hardware indicating the need for attention

» A way to avoid wasting the processor's valuable time in polling loops,
waiting for external events.

* A hardware interrupt causes the processor to save its state of execution
via a context switch, and begin execution of an interrupt handler.

 Efficient, but hardware is required.
» The program is not sequentially executed.

/X
IRQ (interrupt request) (e;og% r J‘N?%
|
R

Maskable interrupt —IMR quest Ll Pavice 0

ﬁ%—u’t;cgl;r;wle e) N
+ |Interrupt vector N\
routi interrupt handler) N D

Interrupt servi

(e

Device 1

Interrupt \
Vectors ~gech) jump ik
74

[W \
W =l

48

Pull-up/down Resistors

SR =212te HL 2 2H27 27t6t7] SAshA

2. Output

- Open collector EE= Open drain 3|29| 42
= 22 = L 4o

TEALTT=E oEHAlala:it oT

73

