
C Programming
- Getting started
- Variables
- Basic C operators
- Conditionals
- Loops
- Functions

1

Getting started
https://www.onlinegdb.com/online_c_compiler

2

https://www.onlinegdb.com/online_c_compiler

Hello world example

#include <stdio.h>
main() {

printf(“hello, world\n”);

}

• Prints “hello, world” to the screen
• Type this in with a text editor and save it as hello.c

3

Breaking down hello.c

#include <stdio.h>
• Tells the compiler to use the library functions described in stdio.h
• printf() function is inside stdio

4

Breaking down hello.c

main()

• Beginning of the main function
• All code execution starts at main()

{}

• Curly brackets group lines of code
• All functions start and end with curly brackets

5

Breaking down hello.c

printf(…);

• Prints to the screen
• The argument is in parenthesis
• The argument is what is printed
• Note the semicolon at the end

6

Breaking down hello.c

”hello, world\n”

• This is the argument to printf() which appears on the screen
• It is a string because it is in quotes (“”)
• \n is a special character that indicates newline

7

Variables

8

Variables

• Names that represents values in the program
• Similar to algebraic variables
• All variables have a type which must be declared

int x;
float y;

• Type determines how arithmetic is performed, how much memory is
required

9

Types and type qualifiers

• Several built-in types, different sizes

• Type qualifiers exist:
• short, long

• char is 8 bits on all platforms

10

Type Size
char 1 byte Fixed size
int 16 bit minimum Typically, word size
float 64 bits, typical Floating point
double 64, 128 bits, typical Double precision

Variable names

• A sequence of visible characters
• Must start with a non-numerical character
• int testval2 (O)
• int 2testval (X)

• No C language keywords
• if, else, while (X)

11

Constants

• Can use #define compiler directive
• #define ANSWER 42

• Any instance of the string is substituted at compile time
• Character constants
• Written as a single character in single quotes
• #define TERMINATOR ‘x’
• Integer equal to the ASCII value of the character
• Some characters are not easy to represent (i.e., bell)

12

Global variables

int global_i;
void foo() {

extern int global_i;

}

• A variable is global if it is defined outside of any function
• A global variable must be declared as an extern in any function

using it
• extern not needed if global declaration is before the function

• Variables can be global across files

13

Globals can be dangerous

void foo() { void bar () {
extern int global_i; extern int global_i;
… …
global_i = a+b–c; x = global_i*… ;
… …

} }

• Global variables can propagate bugs
• Bug in foo can cause bar to crash

• Debugging can become harder
• Reduce modularity of the code

14

Basic C operators

15

Arithmetic/Relational operators

• + (addition), - (subtraction),* (multiplication), / (division)
• % is the modulo operator, division remainder
• 9 % 2 = 1
• 9 % 3 = 0

• ++ (increment), -- (decrement)
• ==, <, >, <=, >=, !=
• if (x<5) …

16

Logical operators

• && (and), || (or), ! (not)
• Treat arguments as 1-bit binary values
• 0 is FALSE
• !0 is TRUE

• if ((A==1) && !B)
• The above is TRUE if A is TRUE and B is FALSE

17

Conditionals

18

Conditional statements

if (expression) if (expr1)
statement1 state1

else else if (expr2)
statement2 state2

else
state3

• else is optional
• expression is evaluated

• Execute statement1 if TRUE, statement2 if FALSE
• expr2 evaluated if expr1 is FALSE

19

Conditional example

int main() {
int x=1;

if (x==1)

printf(“Correct”);
else

printf(“Incorrect”);

}

20

Switch

switch (expression) {
case condition1: statement1
case condition2: statement2
default: statement3

}
• expression is evaluated, compared to conditions
• statements corresponding to the first matching conditions are

executed
• default is optional

21

Break in a switch

switch (x) {
case 0:

y=1;
case 1:

y=2;
break;

case 2:
y=3;

}
• Without a break statement, the case will not end

• If x==0 then both y=1; and y=2; are executed

22

Loops

23

For loops

for (expr1; expr2; expr3) {
statement

}

• Initialization and increment are built into the for loop

24

While and do-while loops

expr1; expr1;
while (expr2) { do {

statement statement

expr3; expr3;
} } while (expr2);

• Condition checked at the top of a while loop
• Condition checked at the bottom of do-while loop

25

While example

int main() {
int i=0;
while (i<3) {

printf(“%i”, i);
i = i + 1;

}
}
• Three passes through the loop; i=0,1,2
• Exits loop when i=3

26

All built into the for statement

int main() {
int i;
for (i=0; i<3; i++) {

printf(“%i”, i);
}

}
• Initialization: i=0
• Termination: i<3
• Step: i++

27

Break and continue

while (x>5) { while (x>5) {
y++; y++;

if (y<3) break; if (y<3) continue;

x++; x++;
} }

• break jumps to the end of a loop
• continue jumps to the next iteration of a loop

28

Functions

29

Functions

void foo(int a, int b) { // function definition
int x, temp;
temp = a + b;
x = temp;
printf(“%i”,x);

}
int main() {

foo(2,3); // function call
}
• Functions can replace groups of instructions
• Data can be passed to functions as arguments

30

Function return value

int foo(int a, int b) { // function definition
int x;
x = a + b;
return x;

}
int main() {

printf(“%i”, foo(2,3));// function call
}
• Functions can return a value to the caller
• The type of the return value must be declared

31

Lab

32

Blink example extended

• Come back to the Blink example.
• Write a function void blink_n_times(int n, int ms)
• which turns the on-board LED

on for ms milliseconds and
off for ms milliseconds
n times

33

Blink example extended

• Use for loops and blink_n_times() function from loop() to
have your Arduino repeat the following

34

ON OFF For the first 1 second

Next second

Next second

Next second

Next second

