
Debugging
- Debugging
- Debug environments
- Debug via serial

1



Debugging

2



Debug and trace

• Controllability and observability are required
• Controllability
• Ability to control sources of data used by the system
• Input pins, input interfaces (serial, Ethernet, etc.)
• Registers and internal memory

• Observability
• Ability to observe intermediate and final results
• Output pins, output interfaces
• Registers and internal memory

3



I/O access is insufficient

• Observation of I/O is not enough to debug

• If Pin2 is incorrect, how do we locate the bug? 

4

main(){
x=f1(pin1,pin2)
foo(x);

}

foo(x){
y=f2(x);
bar(y);

}

bar(y){
pin3=f3(y);

}

Pin1

Pin2
Pin3



Properties of a debugging environment

• Run control of the target
• Start and stop the program execution
• Observe data at stop points

• Real-time monitoring of target execution
• Non-intrusive in terms of performance

• Timing and functional accuracy
• Debugged system should ac like the real system

5



Debug environments

6



Remote debugger

• Frontend running on the host
• Debug monitor hidden on target
• Typically triggered when debug events occur
• Hitting a breakpoint, receiving request from host, etc.

• Debug monitor maintains communication link

7

Host Target

Communication link



Remote debug tradeoffs

• Advantages
• Good run control using breakpoints to stop execution
• Debug monitor can alter memory and registers
• Perfect functional accuracy

• Disadvantages
• Debug interrupts alter timing so real-time monitoring is not possible
• Need a spare communication channel
• Need program in RAM to add breakpoints

8



Embedded debug interfaces

• Many modern processors include embedded debug logic
• Embedded trace macrocell (ARM)
• Background debug mode (Freescale)

• Debug logic permanently build into the processor
• A few dedicated debug pins are added

9



Debug and trace features

• Breakpoints, stopping points in the code
• Watchpoints, memory locations which trigger stop
• On-the-fly memory access
• Examine/change internal processor values
• Single-step through the code
• Export softeware-generated data (printf)
• Timestamp information for each event
• Instruction trace (special purpose HW needed)

10



Debug via serial

11



Serial protocols

• Data is transmitted serially
• Only 1 bit needed (plus common ground)

• Parallel data transmitted serially
• Original bytes/words regrouped by the receiver
• Many protocols are serial to reduce pin usage
• Pins are precious

12



UART

• Universal asynchronous receiver/transmitter
• Used for serial communication between devices
• UART is asynchronous; no shared clock
• Asynchronous allows longer distance communication
• Clock skew is not a problem

13



UART applications

• Used by modems to communicate with network
• Computers used to have an RS232 port, standard
• Not well used anymore, outside of embedded systems
• Replaced by USB, Ethernet, etc.

• Simple, low HW overhead
• Build into most microcontrollers

14



Serial on Arduino

15



Arduino serial communication

• UART protocol used over the USB cable
• Initialize by using Serial.begin()
• Serial.begin(speed) or Serial.begin(speed,config)
• speed is the baud rate
• config sets the data bits, parity, and stop bits
• Serial.begin(9600)
• Serial.begin(9600, SERIAL_8N1)

• 8 data bits, no parity bit, and 1 stop bit

• Usually call Serial.begin() in the setup function

16



Sending text over serial

• Use Serial.print() or Serial.println() to print text in 
the serial monitor
• Strings are converted to ASCII and sent using UART

Serial.println(“Hello World!”);

17



Reading data over serial

• Data can be sent to the Arduino via the serial monitor

• When data is sent, it goes into a buffer in the Arduino until it is read
• Serial.available() is used to see how many bytes are waiting in 

the buffer
int byteNum = Serial.available();

18



Serial.read()
• Returns 1 byte from the serial buffer

int bval = Serial.read();

• Returns -1 if no data is available
• Serial.readBytes() writes several bytes into a buffer

char buff[10];
Serial.readBytes(buff,10);

19


