
C U A U H T É M O C C A R B A J A L

STM32F3 ADC

18/10/2013

1

References

• http://www.embedds.com/introducing-to-stm32-adc-programming-part1/

• http://controlsoft.nmmu.ac.za/STM32F0-Discovery-Board/Example-

programs/Analog

• http://mipsandchips.blogspot.mx/

• STM32F3 Microcontroller Reference Manual

2

http://www.embedds.com/introducing-to-stm32-adc-programming-part1/
http://www.embedds.com/introducing-to-stm32-adc-programming-part1/
http://www.embedds.com/introducing-to-stm32-adc-programming-part1/
http://www.embedds.com/introducing-to-stm32-adc-programming-part1/
http://www.embedds.com/introducing-to-stm32-adc-programming-part1/
http://www.embedds.com/introducing-to-stm32-adc-programming-part1/
http://www.embedds.com/introducing-to-stm32-adc-programming-part1/
http://www.embedds.com/introducing-to-stm32-adc-programming-part1/
http://www.embedds.com/introducing-to-stm32-adc-programming-part1/
http://www.embedds.com/introducing-to-stm32-adc-programming-part1/
http://www.embedds.com/introducing-to-stm32-adc-programming-part1/
http://controlsoft.nmmu.ac.za/STM32F0-Discovery-Board/Example-programs/Analog
http://controlsoft.nmmu.ac.za/STM32F0-Discovery-Board/Example-programs/Analog
http://controlsoft.nmmu.ac.za/STM32F0-Discovery-Board/Example-programs/Analog
http://controlsoft.nmmu.ac.za/STM32F0-Discovery-Board/Example-programs/Analog
http://controlsoft.nmmu.ac.za/STM32F0-Discovery-Board/Example-programs/Analog
http://controlsoft.nmmu.ac.za/STM32F0-Discovery-Board/Example-programs/Analog
http://controlsoft.nmmu.ac.za/STM32F0-Discovery-Board/Example-programs/Analog
http://mipsandchips.blogspot.mx/
http://homepage.cem.itesm.mx/carbajal/Microcontrollers/RESOURCES/STM32F303VC/DM00043574.pdf
http://homepage.cem.itesm.mx/carbajal/Microcontrollers/RESOURCES/STM32F303VC/DM00043574.pdf

ADC PRINCIPLES

3

4

Basics of A/D Conversion (1 of 2)

• Many embedded systems need to deal with

nonelectric quantities: weight, humidity, pressure,

weight, mass or airflow, temperature, light intensity,

and speed.

• These nonelectric quantities are analog in nature.

• Analog quantities must be converted into digital

format so that they can be processed by the

computer.

• An A/D converter can only deal with electric

voltage.

5

Transducer

temperature

pressure

light

weight

airflow

humidity

.

.

.

Such as a

sensor,

load cell,

photocall, or

thermocouple

.

.

signal

conditioning

circuit

(optional)

voltage voltage A/D

converter
Computer

Digital

value

Figure 12.1 The A/D conversion process

Basics of A/D Conversion (2 of 2)

• Any nonelectric quantity must be converted into an electric
quantity using a certain type of transducer.

• A transducer converts a nonelectric quantity into an electric
quantity.

• The output of a transducer may not be in a suitable range for A/D
conversion.

• A signal conditioning circuit is needed to shift and scale the
transducer output to a range suitable for A/D conversion.

• A lowpass/bandpass filter is required to remove unwanted signals
outside the bandwidth of interest and prevent aliasing.

The A/D conversion process

http://www.analog.com/static/imported-files/tutorials/MT-002.pdf

6

Voltage
D

ig
it

al
 C

o
d

e

Figure 12.2 An ideal A/D converter output characteristic

Analog Voltage and
Digital Code Characteristic (1 of 2)

• An ideal A/D converter
should have a
characteristic as shown.

• An A/D converter with
characteristic as shown
would need infinite
number of bits to
represent the A/D
conversion result. An ideal ADC output characteristic

7

Figure 12.3 Output characteristic of an ideal n-bit A/D converter

V
DD

/2n V
DD

2n-1

o
u

tp
u

t c
o

d
e

voltage

Analog Voltage and
Digital Code Characteristic (2 of 2)

• An n-bit A/D converter has 2n
possible output code values.

• The output characteristic of an
n-bit A/D ideal converter is
shown.

• The area above and below the
dotted line is called quantization
error.

• Using n-bit to represent A/D
conversion has an average error
of VDD/2n+1.

• A real A/D converter output
may have nonlinearity and
nonmonotonicity errors

Output characteristic of an ideal n-bit ADC

8

A/D Conversion Algorithms

• Dominant:

• Delta-Sigma

• Successive Approximation

• Pipeline

• Flash

• Other:

• Tracking

• Stair Step Ramp

• Single and Dual Slope

http://www.analog.com/library/analogdialogue/archives/39-06/architecture.html

http://www.maximintegrated.com/app-notes/index.mvp/id/1041

Industrial Measurement, voice-band, audio

Data acquisition

High speed: instrumentation

video, IF sampling, software

radio, etc.

http://www.analog.com/library/analogdialogue/archives/39-06/architecture.html
http://www.analog.com/library/analogdialogue/archives/39-06/architecture.html
http://www.analog.com/library/analogdialogue/archives/39-06/architecture.html
http://www.analog.com/library/analogdialogue/archives/39-06/architecture.html
http://www.maximintegrated.com/app-notes/index.mvp/id/1041
http://www.maximintegrated.com/app-notes/index.mvp/id/1041
http://www.maximintegrated.com/app-notes/index.mvp/id/1041
http://www.maximintegrated.com/app-notes/index.mvp/id/1041

9

A/D Successive Approximation (1 of 3)

• Most widely used A/D

 converter

• Faster than other methods

 except for flash method

• Fixed conversion time

10

Successive Approximation Method (2 of 3)

• Approximates the analog
signal in n steps.

• The first step initializes the
SAR register to 0.

• Perform a series of guessing
steps that starts from the
most significant bit and
proceeding toward the
least significant bit.

• For every bit in SAR register
guess it to be 1.

• Converts the value of the
SAR register to analog
voltage.

• Compares the D/A output
with the analog input and
clears the bit to 0 if the D/A
output is larger.

11

ILLUSTRATION OF FOUR-BIT SAC OPERATION USING A DAC STEP SIZE OF 1 V AND VA = 10.4 V.

12

A/D Successive Approximations

13

VK = VRL + (range  k)  2n

Optimal Voltage Range for A/D Conversion

• Needs a low reference voltage (VRL) and a high reference
voltage (VRH) in performing A/D conversion.

• VRL is often set to ground level.

• VRH is often set to VDD.

• Most A/D converter are ratiometric

• A 0 V (or VRL) analog input is converted to the digital code of 0.

• A VDD (or VRH) analog input is converted to the digital code of 2n – 1.

• A VK input will be converted to the digital code k = VK  2n  VDD.

• The A/D conversion result will be most accurate if the value of
analog signal covers the whole voltage range from VRL to VRH.

• The A/D conversion result k can be translated back to an
analog voltage VK by the following equation:

Equation 1

14

Example

Suppose that there is a 10-bit A/D converter with VRL = 1 V

and VRH = 4V. Find the corresponding voltage values for the

A/D conversion results of 25, 80, 240, 500, 720, 800, and

900.

Solution

range = VRH – VRL = 4V – 1V = 3V

V(25) = 1 V + (3  25)  210 = 1.07324 V

V(80) = 1 V + (3  80)  210 = 1.23438 V

V(240) = 1 V + (3  240)  210 = 1.70313 V

V(500) = 1 V + (3  500)  210 = 2.46484 V

V(720) = 1 V + (3  720)  210 = 3.10938 V

V(800) = 1 V + (3  800)  210 = 3.34375 V

V(900) = 1 V + (3  900)  210 = 3.63672 V

15

V
OUT

+V
IN

R1 R2

OP AMP

Figure 12.6 A voltage scaler

AV = VOUT  VIN = (R1 + R2)  R1

 = 1 + R2/R1

Example

Choose appropriate values of R1 and R2 in to scale a voltage in the range of

0~200mV to 0~5V.

Solution

AV = 1 + R2/R1 = 5V / 200mV = 25

 R2/R1 = 24

Choose R1 = 4.1 K and R2 = 100 K  to achieve the desired ratio.

Scaling Circuit
• Some transducer has an output voltage in the range of 0 ~ VZ, where

VZ < VDD.

• VZ can be much smaller than VDD.

• When VZ is much smaller than VDD, the A/D conversion result cannot
be accurate.

• The solution to this problem is to use an scaling circuit to amplify the
transducer output to cover the whole range of 0 V VRH to VDD.

A voltage scaler

Equation 2

16

V
IN

V
1

R
1

R
2

R
f

-

+

+12 V

- 12 V

741

-

+

+12 V

- 12 V

741

R
0

R
0

V
OUT

V
OUT

- (12-5)
R

f

R
1

R
2

R
f= V

1
V

IN

Figure 12.7 Level shifting and scaling circuit

V
M

V
M

= - V
IN

Voltage Translation Circuit

• Some transducer has output voltage in the range
from V1 to V2 (V2 > V1).

• The accuracy of the A/D conversion will be more
accurate if this voltage can be scaled and shifted
to 0 ~ VDD.

• The circuit shown can shift and scale the voltage
from V1 to V2 to the range of 0~VDD.

Level shifting and scaling circuit

Equation 3

17

Example

Choose appropriate resistor values and the adjusting voltage so that

the circuit shown in the previous figure can shift the voltage from the

range of –1.2 V ~ 3.0 V to the range of 0V ~ 5V.

Solution: Applying Equation 3:

 0 = -1.2  (Rf/R1) – (Rf/R2)  V1

 5 = 3.0  (Rf/R1) – (Rf/R2)  V1

- By choosing R0 = R1 = 10 K, R2 = 100 K, Rf = 12 K, and V1 = -12V,

one can translate and scale the voltage to the desired range.

STM32F3 ADC

18

Introduction (1)

• STM32 microcontrollers have one of the most

advanced ADCs on the microcontroller market. You

could imagine a multitude of applications based on

the STM32 ADC features.

• Some ADC modes are provided to simplify

measurements and give efficient results in

applications such as motor control.

19

Introduction (2)

• Each STM32F3 ADC is a 12-bit successive approximation ADC.

• Each ADC has up to 18 multiplexed channels allowing the
measurements of up to 16 external sources and up to 4 internal
sources.

• A/D conversion can be performed in:

• single or multiple channels,

• discontinuous or continuous conversion mode,

• regular or injected mode,

• single or dual (simultaneous) mode

• The result of the ADC is stored in a left-aligned or right-aligned
16-bit data register.

• The ADCs are mapped on the AHB bus to allow fast data
handling.

• The analog watchdog features allow the application to detect
if the input voltage goes outside the user-defined high or low
thresholds.

20

Conversion Modes (1)

• Single-channel, single conversion mode

• This is the simplest ADC mode. In this mode,

the ADC performs the single conversion

(single sample) of a single channel x and
stops after completion of the conversion.

• This mode can be used for the measurement

of a voltage level to decide if the system can

be started or not. Measure the voltage level
of the battery before starting the system: if the

battery has a low level, the “low battery”

message appears. In this case, do not start

the system.

21

Conversion Modes (2)

• Multichannel (scan), single conversion mode
• This mode is used to convert some channels

successively in independent mode. With the ADC
sequencer, you can use this ADC mode to configure
any sequence of up to 16 channels successively with
different sampling times and in different orders. You
can for example carry out the sequence shown in
the figure below. In this way, you do not have to stop
the ADC during the conversion process in order to
reconfigure the next channel with a different
sampling time. This mode saves additional CPU load
and heavy software development.

ADC sequencer converting 7 channels with different configured sampling times
22

Conversion Modes (3)

• Multichannel (scan), single conversion mode (cont)
• This mode can be used when starting a system depends on

some parameters like knowing the coordinates of the arm’s
tip in a manipulator arm system. In this case, you have to
read the position of each articulation in the manipulator
arm system at power-on to determine the coordinates of
the arm’s tip.

• This mode can also be used to make single measurements
of multiple signal levels (voltage, pressure, temperature,
etc.) to decide if the system can be started or not in order
to protect the people and equipment.

• It can likewise be used to convert signals coming from strain
gauges to determine the directions and values of the
different strains and deformations of an object.

23

Conversion Modes (4)

• Single-channel continuous conversion mode
• The single-channel continuous conversion mode

converts a single channel continuously and
indefinitely in regular channel conversion.

• The continuous mode feature allows the ADC to
work in the background. The ADC converts the
channels continuously without any intervention
from the CPU. Additionally, the DMA can be used
in circular mode, thus reducing the CPU load.

• This ADC mode can be implemented to monitor a
battery voltage, the measurement and regulation
of an oven temperature, etc.

• In the case of the oven temperature regulation,
the temperature is read and compared to the
temperature set by the user. When the oven
temperature reaches the desired temperature,
the heating resistor is powered off.

24

Conversion Modes (5)

• Multichannel (scan) continuous conversion
mode
• The multichannel, or scan, continuous mode can

be used to convert some channels successively
with the ADC in independent mode. With the
sequencer, you can configure any sequence of up
to 16 channels successively with different sampling
times and different orders. This mode is similar to
the multichannel single conversion mode except
that it does not stop converting after the last
channel of the sequence but it restarts the
conversion sequence from the first channel and
continues indefinitely.

• This mode can be used to monitor multiple
voltages and temperatures in a multiple battery
charger. The voltage and temperature of each
battery are read during the charging process.
When the voltage or the temperature reaches the
maximum level, the corresponding battery should
be disconnected from the charger. 25

Conversion Modes (6)

• Injected conversion mode
• This mode is intended for use when conversion is triggered by an

external event or by software.
• The injected group has priority over the regular channel group. It

interrupts the conversion of the current channel in the regular channel
group.

• This mode can be used to synchronize the conversion of channels to
an event. It is interesting in motor control applications where transistor
switching generates noise that impacts ADC measurements and
results in wrong conversions. Using a timer, the injected conversion
mode can thus be implemented to delay the ADC measurements to
after the transistor switching.

Injected conversion mode 26

Dual mode (1)

• ADC1 and ADC2 are tightly

coupled and can operate in

dual mode (ADC1 is master)

27 STM32F3 Microcontroller Reference Manual, page 204

http://homepage.cem.itesm.mx/carbajal/Microcontrollers/RESOURCES/STM32F303VC/DM00043574.pdf

Dual mode (2)

• ADC3 and ADC4 are tightly

coupled and can operate in

dual mode (ADC3 is master)

28
STM32F3 Microcontroller Reference Manual, page 205

http://homepage.cem.itesm.mx/carbajal/Microcontrollers/RESOURCES/STM32F303VC/DM00043574.pdf

Conversion Modes (7)

• Dual regular simultaneous mode

• The dual regular simultaneous ADC mode is used to perform

two conversions simultaneously owing to the

synchronization of ADC1 and ADC2. Each ADC converts a
channel sequence (with scan enabled and the sequencer

of each ADC configured) or converts a single channel

(scan disabled).

• The conversion can be started with an external trigger or by

software. In this mode, the conversion results of ADC1 and

ADC2 are stored in ADC1’s data register (32-bit format). The

next figure shows how ADC1 and ADC2 convert two

sequences simultaneously. ADC1 converts a sequence of 16
channels successively: channel 15 to channel 0 and ADC2

converts a sequence of 16 channels successively: channel 0

to channel 15.
29

Conversion Modes (8)

• The dual regular simultaneous mode can be used in applications
where two signals should be sampled and converted at the same
time. For example, to measure and plot the single phase or three-
phase instantaneous electrical power: pn(t) = un (t) × in (t).

• In this case, the voltage and current should be measured
simultaneously and then the instantaneous power, which is the
product of un(t) and in(t), should be computed.

This figure shows how to measure a power using the two ADCs in dual

regular simultaneous mode. To measure a single-phase power, ADC1 and

ADC2 are used with two channels (1 channel for the voltage and 1

channel for the current). To measure a three-phase power, ADC1 and

ADC2 are used with 6 channels (3 channels for the voltage and 3 channels

for the current).
30

31 STM32F3 Microcontroller Reference Manual, page 203

http://homepage.cem.itesm.mx/carbajal/Microcontrollers/RESOURCES/STM32F303VC/DM00043574.pdf

Cortex-M4

32

ADC Interrupt

DMA Request

ADC Channels

PIN CHANNEL PIN CHANNEL PIN CHANNEL PIN CHANNEL PIN CHANNEL PIN CHANNEL

PA0 ADC1_IN1 PA4 ADC2_IN1 PB1 ADC3_IN1 PE14 ADC4_IN1

PA1 ADC1_IN2 PA5 ADC2_IN2 PE9 ADC3_IN2 PE15 ADC4_IN2

PA2 ADC1_IN3 PA6 ADC2_IN3 PE13 ADC3_IN3 PB12 ADC4_IN3

PA3 ADC1_IN4 PA7 ADC2_IN4 PB14 ADC4_IN4

PF4 ADC1_IN5 PC4 ADC2_IN5 PB13 ADC3_IN5 PB15 ADC4_IN5

PC0 ADC12_IN6 PE8 ADC34_IN6

PC1 ADC12_IN7 PD10 ADC34_IN7

PC2 ADC12_IN8 PD11 ADC34_IN8

PC3 ADC12_IN9 PD12 ADC34_IN9

PF2 ADC12_IN10 PD13 ADC34_IN10

PC5 ADC2_IN11 PD14 ADC34_IN11

PB2 ADC2_IN12 PB0 ADC3_IN12 PD8 ADC4_IN12

PE7 ADC3_IN13 PD9 ADC4_IN13

PE10 ADC3_IN14

OA1 ADC1_IN15 PE11 ADC3_IN15

TS ADC1_IN16 PE12 ADC3_IN16

BT/2 ADC1_IN17 OA2 ADC2_IN17 OA3 ADC3_IN17 OA4 ADC4_IN17

VRI ADC1_IN18 VRI ADC2_IN18 VRI ADC3_IN18 VRI ADC4_IN18

S
LO

W

33

INTERNAL

EXTERNAL

F
A

S
T

ADC main registers (x=1..4)

ADCx_ISR ADC Interrupt and Status Register

ADCx_IER ADC Interrupt Enable Register

ADCx_CR ADC Control Register

ADCx_CFGR ADC ConFiGuration Register

ADCx_SMPR1..2 ADC SaMPle time Register 1..2

ADCx_SQR1..4 ADC Regular SeQuence Register 1..4

ADCx_DR ADC Regular Data Register

ADCx_CALFACT ADC CALibration FACTors

ADCx_DIFSEL ADC DIFferential Mode SELection Register 2

34

ADCx_CR reset value: 0x2000 0000

ADVREGEN[1:0] =’10’: ADC Voltage regulator disabled

Most Important ADC Bits
Register Bits Name Function

ADCx_ISR 3 EOS End of regular sequence flag

2 EOC End of conversion flag

0 ADRDY ADC ready

ADCx_CR 31 ADCAL Start ADC calibration

30 ADCALDIF Differential mode for calibration

29:28 ADVREGEN[1:0] ADC voltage regulator enable (Reset value: ‘01’ : disabled)

2 ADSTART ADC start of regular conversion

1 ADDIS ADC disable command

0 ADEN ADC enable control

ADCx_CFGR 13 CONT Single / continuous conversion mode for regular conversions

5 ALIGN Right/Left data alignment

4:3 RES[1:0] Data resolution (0:12, 1:10, 2:8, 3:6)

ADCx_SMPR1:2 29:0 SMPx[2:0] Channel x sampling time selection (ADC clock cycles: 0:1.5; 1:2.5, 2:4.5,

3:7.5, 4:19.5; 5:61.5; 6:181.5; 7:601.5)

ADCx_SQR1:4 SQx[4:0] x conversion in regular sequence (channel to be converted)

L[3:0] Regular channel sequence length (0: 1 conversions, 1: 2 conversions,…)

ADCx_DR 15:0 RDATA[15:0 Regular Data converted

ADCx_CALFACT 6:0 CALFACT_S[6:0] Calibration factor

35

36

A
D

C
 R

e
g

is
te

rs

37

A
D

C
 R

e
g

is
te

rs

38

A
D

C
 R

e
g

is
te

rs

Bus Matrix and Busses

CORTEX-M4

CORE

B
u

s
M

a
tr

ix

IBus

DBus

SBus

DMA1

DMA2
AHB1

Bridge2

APB1

APB2

TIM[1,8,15,16,17]

SPI1

USART1

SPI1

EXTI

COMP

OPAMP

SYSCFG

TIM[2,3,4,6,7]

SPI[2,3]

USART[2,:3]

UART[4:5]

I2C[1,2]

CAN

USB

DAC

IWDG

WWDG

RTC

Bridge1

39

fCLK ≤ 36MHz

fCLK ≤ 72MHz

fCLK ≤ 72MHz

AHB[1;3]: Advanced High-performance Bus

APB: Advanced Peripheral Bus

RCC: Reset and Clock Control

AHB2

AHB3

FLTIF

RAM

GPIO[A:F]

ADC[1:2]

FLASH

TSC

CRC

RCC

STM32F3 Microcontroller Reference Manual, pages 41-44

fTIM[2:7] CLK = 2 * fAPB1CLK

(STM32F3 Microcontroller

Datasheet, page 17)

http://homepage.cem.itesm.mx/carbajal/Microcontrollers/RESOURCES/STM32F303VC/DM00043574.pdf
http://homepage.cem.itesm.mx/carbajal/Microcontrollers/RESOURCES/STM32F303VC/DM00058181.pdf

ADC clock

• The input clock of the two ADCs (master and slave) can

be selected between two different clock sources:

• The ADC clock can be a specific clock source, named

ADCxy_CK (xy=12 or 34) which is independent and

asynchronous with the AHB clock. It can be configured in the

RCC_CFGR2 to deliver up to 72 MHz (PLL output).

• To select this scheme, bits CKMODE[1:0] of the ADC_CCR register
must be reset.

• The ADC clock can be derived from the AHB clock of the ADC

bus interface, divided by a programmable factor (1, 2 or 4). In

this mode, a programmable divider factor can be selected (/1,

2 or 4 according to bits CKMODE[1:0]).

• To select this scheme, bits CKMODE[1:0] of the ADC_CCR register
must be different from “00”.

Note: CKMODE[1:0] is valid only if the AHB prescaler is set to 1 (to

achieve a clock duty cycle of 50%). 40

Clock tree (detail)

ADCx->CCR.CKMODE[1:0] > 0

ADCx->CCR.CKMODE[1:0] = 0

RCC->CFGR2.ADCxyPRES[4:0]
41

ADCxy_CK

HCLK

Clock configuration register 2 (RCC_CFGR2)

Bits

13:9 ADC34PRES Set and reset by software to
control PLL clock to ADC34
division factor.

0xxxx: ADC34 clock disabled, ADC34
can use AHB clock
10000: PLL clock ÷ 1
10001: PLL clock ÷ 2

10010: PLL clock ÷ 4
…

8:4 ADC12PRES Set and reset by software to
control PLL clock to ADC12
division factor.

0xxxx: ADC12 clock disabled, ADC12
can use AHB clock
10000: PLL clock ÷ 1

10001: PLL clock ÷ 2
10010: PLL clock ÷ 4
…

3:0 PREDIV These bits are set and cleared by
software to select PREDIV1 division

factor. They can be
written only when the PLL is
disabled.

0000: HSE input to PLL not divided
0001: HSE input to PLL ÷ 2

0010: HSE input to PLL ÷ 3
0011: HSE input to PLL ÷ 4
… 42

ADC voltage regulator (ADVREGEN)

• The sequence below is required to start ADC
operations:
• Enable the ADC internal voltage regulator.

• The software must wait for the startup time of the ADC
voltage regulator (TADCVREG_STUP) before launching a
calibration or enabling the ADC. This temporization must be
implemented by software. TADCVREG_STUP is equal to 10 μs
in the worst case process/temperature/power supply.

• After ADC operations are complete, the ADC is
disabled (ADEN=0).

• It is possible to save power by disabling the ADC
voltage regulator.

Note: When the internal voltage regulator is disabled, the

internal analog calibration is kept.
43

ADVREG enable sequence

• To enable the ADC voltage regulator, perform the

sequence below:

• Change ADVREGEN[1:0] bits from ‘10’ (disabled state, reset

state) into ‘00’.

• Change ADVREGEN[1:0] bits from ‘00’ into ‘01’ (enabled

state).

44

Single-ended and differential input channels

• Channels can be configured to be either single-ended

input or differential input by writing into bits DIFSEL[15:1]

in the ADC_DIFSEL register. This configuration must be

written while the ADC is disabled (ADEN=0). Note that

DIFSEL[18:16] are fixed to single ended channels (internal

channels only) and are always read as 0.

• In single-ended input mode, the analog voltage to be

converted for channel “i” is the difference between the

external voltage ADC_INi (positive input) and VREF- (negative

input).

• In differential input mode, the analog voltage to be converted

for channel “i” is the difference between the external voltage

ADC_INi (positive input) and ADC_INi+1 (negative input).

45

Calibration (ADCAL, ADCALDIF,
ADC_CALFACT)

• Each ADC provides an automatic calibration procedure
which drives all the calibration sequence including the power-
on/off sequence of the ADC.

• During the procedure, the ADC calculates a calibration factor
which is 7-bits wide and which is applied internally to the ADC
until the next ADC power-off.

• During the calibration procedure, the application must not use
the ADC and must wait until calibration is complete.

• Calibration is preliminary to any ADC operation. It removes the
offset error which may vary from chip to chip due to process
or band-gap variation.

• The calibration factor to be applied for single-ended input
conversions is different from the factor to be applied for
differential input conversions:
• Write ADCALDIF=0 before launching a calibration which will be

applied for single-ended input conversions.
• Write ADCALDIF=1 before launching a calibration which will be

applied for differential input conversions.
46

Calibration (ADCAL, ADCALDIF,
ADC_CALFACT)

• The calibration is then initiated by software by setting bit
ADCAL=1.

• Calibration can only be initiated when the ADC is
disabled (when ADEN=0).

• ADCAL bit stays at 1 during all the calibration sequence.

• It is then cleared by hardware as soon the calibration
completes.

• At this time, the associated calibration factor is stored
internally in the analog ADC and also in the bits
CALFACT_S[6:0] or CALFACT_D[6:0] of ADC_CALFACT
register (depending on single-ended or differential input
calibration)

• The internal analog calibration is kept if the ADC is
disabled (ADEN=0). However, if the ADC is disabled for
extended periods, then it is recommended that a new
calibration cycle is run before re-enabling the ADC.

47

Software procedure to calibrate the ADC

• Ensure that ADVREGEN[1:0]=’01’ and ADC voltage

regulator startup time has elapsed.

• Ensure that ADEN=0.

• Select the input mode for this calibration by setting

ADCALDIF=0 (Single-ended input) or ADCALDIF=1

(Differential input).

• Set ADCAL=1.

• Wait until ADCAL=0.

• The calibration factor can be read from

ADC_CALFACT register.

48

ADC on-off control (ADEN, ADDIS,
ADRDY)

• Once ADVREGEN[1:0] = ’01’, the ADC must be
enabled and the ADC needs a stabilization time
tSTAB before it starts converting accurately (10µs).

• Two control bits enable or disable the ADC:
• ADEN=1 enables the ADC. The flag ADRDY will be set once

the ADC is ready for operation.

• ADDIS=1 disables the ADC.

• ADEN and ADDIS are then automatically cleared by
hardware as soon as the analog ADC is effectively
enabled/disabled.

• Regular conversion can then start by setting
ADSTART=1.

49

ADC on-off control (ADEN, ADDIS,
ADRDY)

• The internal analog calibration is lost each time the
power of the ADC is removed (example, when the
product enters in STANDBY or VBAT mode.

• In this case, to avoid spending time recalibrating the
ADC, it is possible to re-write the calibration factor into
the ADC_CALFACT register without recalibrating,
supposing that the software has previously saved the
calibration factor delivered during the previous
calibration.

• The calibration factor can be written if the ADC is
enabled but not converting (ADEN=1 and ADSTART=0).
Then, at the next start of conversion, the calibration
factor will automatically be injected into the analog
ADC.
• This loading is transparent and does not add any cycle latency

to the start of the conversion.

50

ADC on-off control (ADEN, ADDIS,
ADRDY)

• Software procedure to enable the ADC
• 1. Set ADEN=1.

• 2. Wait until ADRDY=1 (ADRDY is set after the ADC startup
time). This can be done using the associated interrupt
(setting ADRDYIE=1).

• Software procedure to disable the ADC
• 1. Check that ADSTART=0 to ensure that no conversion is

ongoing. If required, stop any regular conversion ongoing
by setting ADSTP=1 and then wait until ADSTP=0.

• 2. Set ADDIS=1.

• 3. If required by the application, wait until ADEN=0, until the
analog ADC is effectively disabled (ADDIS will automatically
be reset once ADEN=0).

51

Channel selection (SQRx)

• There are up to 18 multiplexed channels per
ADC:
• 5 fast analog inputs coming from GPIO PADs

(ADC_IN1..5)
• Up to 11 slow analog inputs coming from GPIO PADs

(ADC_IN5..16).
• Depending on the products, not all of them are

available on GPIO PADS.

• ADC1 is connected to 4 internal analog inputs:
• ADC1_IN15 = VOPAMP1 = Reference Voltage for the

Operational Amplifier 1

• ADC1_IN16 = VTS = Temperature Sensor

• ADC1_IN17 = VBAT/2 = VBAT channel

• ADC1_IN18 = VREFINT = Internal Reference Voltage (also
connected to ADC2_IN18, ADC3_IN18 and ADC4_IN18).

• For the other ADCs:
• ADC_IN17 = VOPAMP2 = Reference Voltage for the

Operational Amplifier 2 (ADC2)

• ADC_IN17 = VOPAMP3 = Reference Voltage for the
Operational Amplifier 3 (ADC3)

• ADC_IN17 = VOPAMP4 = Reference Voltage for the
Operational Amplifier 4 (ADC4) 52

Channel selection (SQRx)

53

Channel selection (SQRx)

• It is possible to organize the conversions in two groups:
regular and injected.

• A group consists of a sequence of conversions that can
be done on any channel and in any order.

• For instance, it is possible to implement the conversion sequence in
the following order: ADC_IN3, ADC_IN8, ADC_IN2, ADC_IN2,
ADC_IN0, ADC_IN2, ADC_IN2, ADC_IN15.

• A regular group is composed of up to 16 conversions.
The regular channels and their order in the conversion
sequence must be selected in the ADC_SQRx registers.

• The total number of conversions in the regular group
must be written in the L[3:0] bits in the ADC_SQR1
register.

54

Channel-wise programmable sampling time
(SMPR1, SMPR2)

• Before starting a conversion, the ADC must establish a direct connection
between the voltage source under measurement and the embedded
sampling capacitor of the ADC. This sampling time must be enough for
the input voltage source to charge the embedded capacitor to the
input voltage level.

• Each channel can be sampled with a different sampling time which is
programmable using the SMP[2:0] bits in the ADC_SMPR1 and
ADC_SMPR2 registers. It is therefore possible to select among the
following sampling time values:

SMP ADC clock cycles

000 1.5

001 2.5

010 4.5

011 7.5

100 19.5

101 61.5

110 181.5

111 601.5

• The total conversion time is calculated as

follows (resolution = 12 bits):

• Tconv = Sampling time + 12.5 ADC clock

cycles

• Example:

• With FADC_CLK = 72 MHz and a sampling

time of 1.5 ADC clock cycles:

• Tconv = (1.5 + 12.5) ADC clock

cycles = 14 ADC clock cycles =

0.194 μs (for fast channels)

55

• Cext represents the capacitance of the PCB (dependent on
soldering and PCB layout quality) plus the pad capacitance
(roughly 7 pF). A high Cext value will downgrade conversion
accuracy. To remedy this, fADC should be reduced.

• The time constant required for an RC circuit to settle to within 1/4
LSB with 12 bits resolution is :

∂ = time constant * ln (212+2)= 9.7 time constant ~ 10 time constant

56

5pF

Rin

Constraints on the sampling time for fast
and slow channels

• For each channel, bits
SMP[2:0] must be
programmed to respect a
minimum sampling time
which depends on:
• the type of channel (fast or

slow)

• the resolution

• the output impedance of the
external signal source to be
converted (Rin)

57

Single conversion mode (CONT=0)

• In Single conversion mode, the ADC performs once all the
conversions of the channels. This mode is started with the
CONT bit at 0 by either:
• Setting the ADSTART bit in the ADC_CR register
• External hardware trigger event

• Inside the regular sequence, after each conversion is
complete:
• The converted data are stored into the 16-bit ADC_DR register
• The EOC (end of regular conversion) flag is set
• An interrupt is generated if the EOCIE bit is set

• After the regular sequence is complete:
• The EOS (end of regular sequence) flag is set
• An interrupt is generated if the EOSIE bit is set

• Then the ADC stops until a new external regular trigger occurs
or until bit ADSTART is set again.

58

Single conversions of a sequence,
software trigger (Timing Diagram)

59

Continuous conversion mode (CONT=1)

• This mode applies to regular channels only.

• In continuous conversion mode, when a software or hardware
regular trigger event occurs, the ADC performs once all the
regular conversions of the channels and then automatically re-
starts and continuously converts each conversions of the
sequence. This mode is started with the CONT bit at 1 either by
external trigger or by setting the ADSTART bit in the ADC_CR
register.

• Inside the regular sequence, after each conversion is complete:
• The converted data are stored into the 16-bit ADC_DR register

• The EOC (end of conversion) flag is set

• An interrupt is generated if the EOCIE bit is set

• After the sequence of conversions is complete:
• The EOS (end of sequence) flag is set

• An interrupt is generated if the EOSIE bit is set

• Then, a new sequence restarts immediately and the ADC
continuously repeats the conversion sequence.

Note: To convert a single channel, program a sequence with a length of 1.

60

Continuous conversion of a sequence,
software trigger (Timing Diagram)

61

ADC Example (1)

 #include "stm32f30x.h“

void Delay (uint32_t nTime);

uint16_t ADC1ConvertedValue = 0;

uint16_t ADC1ConvertedVoltage = 0;

uint16_t calibration_value = 0;

Volatile uint32_t TimingDelay = 0;

int main(void)

{

 // At this stage the microcontroller clock tree is already configured

 RCC->CFGR2 |= RCC_CFGR2_ADCPRE12_DIV2; // Configure the ADC clock

 RCC->AHBENR |= RCC_AHBENR_ADC12EN; // Enable ADC1 clock

 // Setup SysTick Timer for 1 µsec interrupts

 if (SysTick_Config(SystemCoreClock / 1000000))

 {

 // Capture error
 while (1)

 {}

 }

62

ADC Example (2)

 // ADC Channel configuration PC1 in analog mode
 RCC->AHBENR |= RCC_AHBENR_GPIOCEN; // GPIOC Periph clock enable

 GPIOC->MODER |= 3 << (1*2); // Configure ADC Channel7 as analog input

 /* Calibration procedure */
 ADC1->CR &= ~ADC_CR_ADVREGEN;

 ADC1->CR |= ADC_CR_ADVREGEN_0; // 01: ADC Voltage regulator enabled

 Delay(10); // Insert delay equal to 10 µs

 ADC1->CR &= ~ADC_CR_ADCALDIF; // calibration in Single-ended inputs Mode.

 ADC1->CR |= ADC_CR_ADCAL; // Start ADC calibration

 // Read at 1 means that a calibration in progress.

 while (ADC1->CR & ADC_CR_ADCAL); // wait until calibration done

 calibration_value = ADC1->CALFACT; // Get Calibration Value ADC1

63

ADC Example (3)

 // ADC configuration
 ADC1->CFGR |= ADC_CFGR_CONT; // ADC_ContinuousConvMode_Enable

 ADC1->CFGR &= ~ADC_CFGR_RES; // 12-bit data resolution

 ADC1->CFGR &= ~ADC_CFGR_ALIGN; // Right data alignment

 /* ADC1 regular channel7 configuration */

 ADC1->SQR1 |= ADC_SQR1_SQ1_2 | ADC_SQR1_SQ1_1 | ADC_SQR1_SQ1_0; // SQ1 = 0x07, start converting ch7

 ADC1->SQR1 &= ~ADC_SQR1_L; // ADC regular channel sequence length = 0 => 1 conversion/sequence

 ADC1->SMPR1 |= ADC_SMPR1_SMP7_1 | ADC_SMPR1_SMP7_0; // = 0x03 => sampling time 7.5 ADC clock cycles

 ADC1->CR |= ADC_CR_ADEN; // Enable ADC1

 while(!ADC1->ISR & ADC_ISR_ADRD); // wait for ADRDY

 ADC1->CR |= ADC_CR_ADSTART; // Start ADC1 Software Conversion

 while (1)

 {

 while(!(ADC1->ISR & ADC_ISR_EOC)); // Test EOC flag

 ADC1ConvertedValue = ADC1->DR; // Get ADC1 converted data

 ADC1ConvertedVoltage = (ADC1ConvertedValue *3300)/4096; // Compute the voltage
 }

}

64

ADC Example (4)

65

void SysTick_Handler(void)

{

 TimingDelay--;

}

void Delay (uint32_t nTime)

{

 TimingDelay = nTime;

 while (TimingDelay !=0);

}

