Sensors and actuators

- Sensors

- Resistive sensors

- Voltage-controlling sensors
- Actuators

- Analog actuators

- Pulse width modulation

- Making sounds

Sensors

Sensors

* Allow the microcontroller to receive information about the
environment
 How bright is it?
* How loud is it?
 How far is an object?
* |s the button being pressed?

* Perform operations based on the state of the environment
 Turn on a light if it is dark out
* Voice-controlled operation

Sensing the environment

* Microcontrollers sense voltage
* digitalRead(pin) returns state of a digital pin
* analogRead(pin) returns the analog voltage on a pin

* Sensor logic must convert an environmental effect into voltage

Reading a pushbutton

* Make a pin HIGH when the button is pressed, and LOW when it is not
pressed

Vin Vin

;K
i

Incorrect Correct

Resistive sensors

Resistive sensors

* Many sensors change resistance
* Photoresistors, thermistors, flex sensors, etc.

* Connect sensor in a voltage divider
* As resistance changes, voltage changes

= aee

Photoresistor

* As brightness increases, resistance decreases
* Resistance = 10K ohms, Voltage = 2.5 volts
* Resistance = 5K ohms, Voltage = 3.33 volts

@

Using Photoresistors

{The syrabols wath the circles are the photoresistors.)

Vin

Wout

R

This circuit gives an output
voltage that increases with
the light level.

Light Level

Vin

Wout

This circuit gives an ontput
voltage that decreases with
the light level.

Light Level

Voltage-controlling sensors

Voltage-controlling sensors

* Some sensors control voltage directly

Accelerometer: Gyro:
Reports acceleration Reports angular velocity
in 3 axes in 3 axes

Passive infrared sensor:

detects motion

10

Actuators

Actuators

* Devices that cause something to happen in the physical world

e Qutputs of the devices
e Visual: LED, LCD, monitor
* Audio: buzzer, speaker
* Motion: motors, valve, pump
* Tactile: heating, cooling

- actuation

On-o

* The only control is power

* Even complicated actuators can be controlled via power
e LED, buzzer, monitor

* Does not use the full potential of the actuator

* On-off control may be all that is necessary
* Lights in a classroom

Current limits

* Watch out for current limits
* LED can only handle 20mA

* Be sure to use an appropriate resistor

* Arduino can only supply 40mA
e Cannot drive a motor that requires 10A
* May need to use alternate power supply
* Arduino can control access to power without providing power directly

Analog voltage control

Analog voltage control

* Many actuators need an analog voltage for complete control
* DC motor speed controlled by voltage
* LED brightness controlled by voltage
* Heating element temperature controlled by voltage

* Arduino cannot generate analog outputs

Digital to analog converter (DAC)

* DAC will convert digital number to an analog voltage
* Most microprocessors do not have a DAC
* Can buy one and attach it, but may be costly

Vdd

| . Analog
DAC signal

_ 1 output

Binary
input

Pulse width modulation

Pulse width modulation

* Duty cycle is the percent of time the pulse is HIGH
* Increasing duty-cycle increases perceived voltage

50% duty cycle

75% duty cycle

25% duty cycle

19

analogWrite ()

* Generates a square wave on a pin, 490Hz
* First argument is the pin number

* Second argument is the pulse width
* 0is 0% duty cycle
e 255is 100% duty cycle

* Pin number must be a PWM pin
* Marked on the Arduino with the “~” symbol

* Example:
analogWrite (3,128); will output 2.5V approximately on pin3

Fade example

int brightness=0, fadeAmount=1l, led=3;

vold

vold

setup () {
pinMode (led, OUTPUT) ;

loop () {
analogWrite (led, brightness);

brightness = brightness + fadeAmount;

1f (brightness<=0 || brightness>=255)
fadeAmount = -—-fadeAmount;

delay (30);

Making sounds

tone ()

 tone () can generate a square wave with an arbitrary frequency
* analogWrite () has afixed frequency

* Duty cycle is fixed at 50%
* Can be used to drive a speaker or buzzer

 Two or three arguments
* Pin number
* Frequency, in Hz
e Duration in milliseconds (optional)

Sguare waves Vs. sine waves

e Square waves sound bad
* Contains many high-frequency components

e Square wave is the best we can do with simple digital outputs

L TANA
AT IVAY

Square wave Modified square wave Pure sine wave

Buzzer

* Two inputs: signal and ground
* Produces a click when a rising edge is applied
* Driving with a square wave produces a pitch

¢e I

|

J1
Piezo Buzzer

25

Music system

vold setup () {
}
void loop () {
tone (8, 988, 1000);
delay (1000) ;
tone (8,1047,1000);
delay (1000) ;
}
* Plays two tones, 1 second each
* Delay is needed; only one tone at a time

Lab. 0| X 2@ 1

MEDE O

#include <Servo.h> void loop() {

Servo microServo; for(angle = 0; angle<90; angle++){
int servoPin = 9: microServo.write(angle);

int angle = 0; }delay(value);

void setup() { }

microServo.attach(servoPin);
microServo.write(angle);

}

Lab. 0| X 28 2

Ofg= ¢t e =78
int value = analogRead(A0);
value = map(value, 0, 1023, 10, 80);

- ?oll_ﬂl%jgﬁH A 1%)(?12% Ot E2 1 ™M (0~5V)Z valued 0~1023
AO|9] gt 2 KA

-map &£ valued| A=l 0~1023 AFO| 2| 4= 10~80A0|2| 4rC =
H 2t

Lab. O| A 28 3

ZPNRIRY

int touchSensor = 8;

void loop() {
void setup() { if(digitalRead(touchSensor) == HIGH){
pinMode(touchSensor,INPUT); }
}

}

Lab

Windscreen wiper

e Get your Arduino ready with a touch sensor, a potentiometer, a servo
motor, and a breadboard.

* You are making a simplified windscreen wiper.

* When your Arduino is powered up, your servo motor should head to the rest
position (to 0 degree with an appropriate speed)
* Your touch sensor is the switch.

* While you put your finger on the touch sensor, the servo motor should swing between 0
degree to 90 degrees.

* If you put your finger off, the servo motor should head to the rest position.
* Your potentiometer is a speed controller.
* Rotating the potentiometer should change the wiper’s swing speed.

