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Sensors



Sensors

* Allow the microcontroller to receive information about the
environment
 How bright is it?
* How loud is it?
 How far is an object?
* |s the button being pressed?

* Perform operations based on the state of the environment
 Turn on a light if it is dark out
* Voice-controlled operation



Sensing the environment

* Microcontrollers sense voltage
* digitalRead(pin) returns state of a digital pin
* analogRead(pin) returns the analog voltage on a pin

* Sensor logic must convert an environmental effect into voltage



Reading a pushbutton

* Make a pin HIGH when the button is pressed, and LOW when it is not
pressed
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Resistive sensors



Resistive sensors

* Many sensors change resistance
* Photoresistors, thermistors, flex sensors, etc.

* Connect sensor in a voltage divider
* As resistance changes, voltage changes
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Photoresistor

* As brightness increases, resistance decreases
* Resistance = 10K ohms, Voltage = 2.5 volts
* Resistance = 5K ohms, Voltage = 3.33 volts
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Using Photoresistors

{The syrabols wath the circles are the photoresistors.)
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This circuit gives an output
voltage that increases with
the light level.
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This circuit gives an ontput
voltage that decreases with
the light level.
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Voltage-controlling sensors



Voltage-controlling sensors

* Some sensors control voltage directly

Accelerometer: Gyro:
Reports acceleration Reports angular velocity
in 3 axes in 3 axes

Passive infrared sensor:

detects motion
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Actuators



Actuators

* Devices that cause something to happen in the physical world

e Qutputs of the devices
e Visual: LED, LCD, monitor
* Audio: buzzer, speaker
* Motion: motors, valve, pump
* Tactile: heating, cooling



- actuation

On-o

* The only control is power

* Even complicated actuators can be controlled via power
e LED, buzzer, monitor

* Does not use the full potential of the actuator

* On-off control may be all that is necessary
* Lights in a classroom



Current limits

* Watch out for current limits
* LED can only handle 20mA

* Be sure to use an appropriate resistor

* Arduino can only supply 40mA
e Cannot drive a motor that requires 10A
* May need to use alternate power supply
* Arduino can control access to power without providing power directly



Analog voltage control



Analog voltage control

* Many actuators need an analog voltage for complete control
* DC motor speed controlled by voltage
* LED brightness controlled by voltage
* Heating element temperature controlled by voltage

* Arduino cannot generate analog outputs



Digital to analog converter (DAC)

* DAC will convert digital number to an analog voltage
* Most microprocessors do not have a DAC
* Can buy one and attach it, but may be costly
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Pulse width modulation



Pulse width modulation

* Duty cycle is the percent of time the pulse is HIGH
* Increasing duty-cycle increases perceived voltage

50% duty cycle

75% duty cycle

25% duty cycle
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analogWrite ()

* Generates a square wave on a pin, 490Hz
* First argument is the pin number

* Second argument is the pulse width
* 0is 0% duty cycle
e 255is 100% duty cycle

* Pin number must be a PWM pin
* Marked on the Arduino with the “~” symbol

* Example:
analogWrite (3,128); will output 2.5V approximately on pin3



Fade example

int brightness=0, fadeAmount=1l, led=3;

vold

vold

setup () {
pinMode (led, OUTPUT) ;

loop () {
analogWrite (led, brightness);

brightness = brightness + fadeAmount;

1f (brightness<=0 || brightness>=255)
fadeAmount = -—-fadeAmount;

delay (30);



Making sounds



tone ()

 tone () can generate a square wave with an arbitrary frequency
* analogWrite () has afixed frequency

* Duty cycle is fixed at 50%
* Can be used to drive a speaker or buzzer

 Two or three arguments
* Pin number
* Frequency, in Hz
e Duration in milliseconds (optional)



Sguare waves Vs. sine waves

e Square waves sound bad
* Contains many high-frequency components

e Square wave is the best we can do with simple digital outputs
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Buzzer

* Two inputs: signal and ground
* Produces a click when a rising edge is applied
* Driving with a square wave produces a pitch
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Piezo Buzzer
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Music system

vold setup () {
}
void loop () {
tone (8, 988, 1000);
delay (1000) ;
tone (8,1047,1000);
delay (1000) ;
}
* Plays two tones, 1 second each
* Delay is needed; only one tone at a time



Lab. 0| X 2@ 1

MEDE O

#include <Servo.h> void loop() {

Servo microServo; for(angle = 0; angle<90; angle++){
int servoPin = 9: microServo.write(angle);

int angle = 0; }delay(value);

void setup() { }

microServo.attach(servoPin);
microServo.write(angle);

}
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Ofg= ¢t e =78
int value = analogRead(A0);
value = map(value, 0, 1023, 10, 80);
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int touchSensor = 8;

void loop() {
void setup() { if(digitalRead(touchSensor) == HIGH){
pinMode(touchSensor,INPUT); }
}

}



Lab



Windscreen wiper

e Get your Arduino ready with a touch sensor, a potentiometer, a servo
motor, and a breadboard.

* You are making a simplified windscreen wiper.

* When your Arduino is powered up, your servo motor should head to the rest
position (to 0 degree with an appropriate speed)
* Your touch sensor is the switch.

* While you put your finger on the touch sensor, the servo motor should swing between 0
degree to 90 degrees.

* If you put your finger off, the servo motor should head to the rest position.
* Your potentiometer is a speed controller.
* Rotating the potentiometer should change the wiper’s swing speed.



