
Sensors and actuators
- Sensors
- Resistive sensors
- Voltage-controlling sensors
- Actuators
- Analog actuators
- Pulse width modulation
- Making sounds

1

Sensors

2

Sensors

• Allow the microcontroller to receive information about the
environment
• How bright is it?
• How loud is it?
• How far is an object?
• Is the button being pressed?

• Perform operations based on the state of the environment
• Turn on a light if it is dark out
• Voice-controlled operation

3

Sensing the environment

• Microcontrollers sense voltage
• digitalRead(pin) returns state of a digital pin
• analogRead(pin) returns the analog voltage on a pin

• Sensor logic must convert an environmental effect into voltage

4

Reading a pushbutton

• Make a pin HIGH when the button is pressed, and LOW when it is not
pressed

5

Incorrect Correct

Resistive sensors

6

Resistive sensors

• Many sensors change resistance
• Photoresistors, thermistors, flex sensors, etc.

• Connect sensor in a voltage divider
• As resistance changes, voltage changes

7

Photoresistor

• As brightness increases, resistance decreases
• Resistance = 10K ohms, Voltage = 2.5 volts
• Resistance = 5K ohms, Voltage = 3.33 volts

8

Voltage-controlling sensors

9

Voltage-controlling sensors

• Some sensors control voltage directly

10

Accelerometer:
Reports acceleration
in 3 axes

Gyro:
Reports angular velocity
in 3 axes

Passive infrared sensor:
detects motion

Actuators

11

Actuators

• Devices that cause something to happen in the physical world
• Outputs of the devices
• Visual: LED, LCD, monitor
• Audio: buzzer, speaker
• Motion: motors, valve, pump
• Tactile: heating, cooling

12

On-off actuation

• The only control is power
• Even complicated actuators can be controlled via power
• LED, buzzer, monitor

• Does not use the full potential of the actuator
• On-off control may be all that is necessary
• Lights in a classroom

13

Current limits

• Watch out for current limits
• LED can only handle 20mA
• Be sure to use an appropriate resistor

• Arduino can only supply 40mA
• Cannot drive a motor that requires 10A
• May need to use alternate power supply
• Arduino can control access to power without providing power directly

14

Analog voltage control

15

Analog voltage control

• Many actuators need an analog voltage for complete control
• DC motor speed controlled by voltage
• LED brightness controlled by voltage
• Heating element temperature controlled by voltage

• Arduino cannot generate analog outputs

16

Digital to analog converter (DAC)

• DAC will convert digital number to an analog voltage
• Most microprocessors do not have a DAC
• Can buy one and attach it, but may be costly

17

Pulse width modulation

18

Pulse width modulation

• Duty cycle is the percent of time the pulse is HIGH
• Increasing duty-cycle increases perceived voltage

19

analogWrite()

• Generates a square wave on a pin, 490Hz
• First argument is the pin number
• Second argument is the pulse width
• 0 is 0% duty cycle
• 255 is 100% duty cycle

• Pin number must be a PWM pin
• Marked on the Arduino with the “~” symbol

• Example:
analogWrite(3,128); will output 2.5V approximately on pin3

20

Fade example

int brightness=0, fadeAmount=1, led=3;
void setup() {

pinMode(led, OUTPUT);
}
void loop() {

analogWrite(led, brightness);
brightness = brightness + fadeAmount;
if (brightness<=0 || brightness>=255)

fadeAmount = -fadeAmount;
delay(30);

}

21

Making sounds

22

tone()

• tone() can generate a square wave with an arbitrary frequency
• analogWrite() has a fixed frequency

• Duty cycle is fixed at 50%
• Can be used to drive a speaker or buzzer
• Two or three arguments
• Pin number
• Frequency, in Hz
• Duration in milliseconds (optional)

23

Square waves vs. sine waves

• Square waves sound bad
• Contains many high-frequency components

• Square wave is the best we can do with simple digital outputs

24

Buzzer

• Two inputs: signal and ground
• Produces a click when a rising edge is applied
• Driving with a square wave produces a pitch

25

Music system

void setup() {
}
void loop() {

tone(8, 988, 1000);
delay(1000);
tone(8,1047,1000);
delay(1000);

}
• Plays two tones, 1 second each
• Delay is needed; only one tone at a time

26

Lab. 예제설명 1
서보모터제어
#include <Servo.h>
Servo microServo;
int servoPin = 9;
int angle = 0;

void setup() {
microServo.attach(servoPin);
microServo.write(angle);
}

27

void loop() {
for(angle = 0; angle<90; angle++){
microServo.write(angle);
delay(value);

}
}

Lab. 예제설명 2
아날로그값범위조정
int value = analogRead(A0);
value = map(value, 0, 1023, 10, 80);

- A0핀을통해서들어오는아날로그전압값(0~5V)을 value에 0~1023
사이의값으로저장
- map 함수는 value에저장된 0~1023 사이의값을 10~80사이의값으로
변환

28

Lab. 예제설명 3

터치센서
int touchSensor = 8;

void setup() {
pinMode(touchSensor,INPUT);
}

29

void loop() {
if(digitalRead(touchSensor) == HIGH){

}
}

Lab

30

Windscreen wiper

• Get your Arduino ready with a touch sensor, a potentiometer, a servo
motor, and a breadboard.
• You are making a simplified windscreen wiper.
• When your Arduino is powered up, your servo motor should head to the rest

position (to 0 degree with an appropriate speed)
• Your touch sensor is the switch.

• While you put your finger on the touch sensor, the servo motor should swing between 0
degree to 90 degrees.

• If you put your finger off, the servo motor should head to the rest position.
• Your potentiometer is a speed controller.

• Rotating the potentiometer should change the wiper’s swing speed.

31

